Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 85009 by mathmax by abdo last updated on 18/Mar/20

calculate ∫_0 ^∞   (x^n /(sh(x)))dx with n integr natural

calculate0xnsh(x)dxwithnintegrnatural

Commented by mathmax by abdo last updated on 18/Mar/20

let A_n =∫_0 ^∞  (x^n /(sh(x)))dx ⇒A_n =2∫_0 ^∞   (x^n /(e^x −e^(−x) ))dx  =2 ∫_0 ^∞  ((e^(−x)  x^n )/(1−e^(−2x) ))dx =2 ∫_0 ^∞   x^n  e^(−x) (Σ_(k=0) ^∞  e^(−2kx) )dx  =2 Σ_(k=0) ^∞  ∫_0 ^∞  x^n  e^(−(2k+1)x)  dx =_((2k+1)x=t)   2Σ_(k=0) ^∞ ∫_0 ^∞  ((t/(2k+1)))^n  e^(−t)  (dt/((2k+1)))  =2 Σ_(k=0) ^∞  (1/((2k+1)^(n+1) ))∫_0 ^∞   t^n  e^(−t)  dt =2Γ(n+1)Σ_(k=0) ^∞  (1/((2k+1)^(n+1) ))  we have ξ(x)=Σ_(k=1) ^∞  (1/k^x ) ⇒ξ(n+1)=Σ_(k=1) ^∞  (1/k^(n+1) )  =Σ_(k=1) ^∞  (1/((2k)^(n+1) ))+Σ_(k=0) ^∞  (1/((2k+1)^(n+1) )) =(1/2^(n+1) )Σ_(k=1) ^∞  (1/k^(n+1) ) +Σ_(k=0) ^∞  (1/((2k+1)^(n+1) ))  ⇒Σ_(k=0) ^∞  (1/((2k+1)^(n+1) )) =(1−(1/2^(n+1) ))ξ(n+1) ⇒  A_n =2Γ(n+1)(1−(1/2^(n+1) ))ξ(n+1)  =(2−(1/2^n ))(n!)ξ(n+1)

letAn=0xnsh(x)dxAn=20xnexexdx=20exxn1e2xdx=20xnex(k=0e2kx)dx=2k=00xne(2k+1)xdx=(2k+1)x=t2k=00(t2k+1)netdt(2k+1)=2k=01(2k+1)n+10tnetdt=2Γ(n+1)k=01(2k+1)n+1wehaveξ(x)=k=11kxξ(n+1)=k=11kn+1=k=11(2k)n+1+k=01(2k+1)n+1=12n+1k=11kn+1+k=01(2k+1)n+1k=01(2k+1)n+1=(112n+1)ξ(n+1)An=2Γ(n+1)(112n+1)ξ(n+1)=(212n)(n!)ξ(n+1)

Answered by mind is power last updated on 18/Mar/20

∫_0 ^(+∞) ((2x^n e^x dx)/((e^x −1)(e^x +1)))  =∫_0 ^(+∞) ((x^n dx)/(e^x −1))+∫_0 ^(+∞) (x^n /(e^x +1))dx  =∫_0 ^(+∞) ((x^n e^(−x) )/(1−e^(−x) ))dx  =∫_0 ^(+∞) x^n Σ_(k≥0) e^(−(k+1)x) dx+∫_0 ^(+∞) x^n .Σ_(k≥0) (−1)^k e^(−(1+k)x) dx  =Σ_(k≥0) ∫_0 ^(+∞) x^n e^(−(k+1)x) dx  =Σ_(k≥0) ∫_0 ^(+∞) (y^n /((k+1)^(n+1) ))e^(−y) dy  =Γ(n+1)ζ(n+1)  ∫_0 ^(+∞) x^n .Σ_(k≥0) (−1)^k e^(−(1+k)x) dx  =Σ_(k≥0) ∫_0 ^(+∞) (y^n /((1+k)^(n+1) ))(−1)^k e^(−y) dy  =Γ(n+1)Σ_(k≥0) (−1)^k .(1/((1+k)^(n+1) ))  Σ_(k≥0) (((−1)^k )/((1+k)^(n+1) ))=Σ_(k≥0) (1/((1+2k)^(n+1) ))−(1/((2+2k)^(n+1) ))=(1−(1/2^n ))ζ(n+1)  =Γ(n+1)(1−(1/2^n ))ζ(n+1)  =Γ(n+1){2−(1/2^n )}ζ(n+1)=∫_0 ^(+∞) (x^n /(sh(x)))dx

0+2xnexdx(ex1)(ex+1)=0+xndxex1+0+xnex+1dx=0+xnex1exdx=0+xnk0e(k+1)xdx+0+xn.k0(1)ke(1+k)xdx=k00+xne(k+1)xdx=k00+yn(k+1)n+1eydy=Γ(n+1)ζ(n+1)0+xn.k0(1)ke(1+k)xdx=k00+yn(1+k)n+1(1)keydy=Γ(n+1)k0(1)k.1(1+k)n+1k0(1)k(1+k)n+1=k01(1+2k)n+11(2+2k)n+1=(112n)ζ(n+1)=Γ(n+1)(112n)ζ(n+1)=Γ(n+1){212n}ζ(n+1)=0+xnsh(x)dx

Commented by abdomathmax last updated on 18/Mar/20

thank you sir.

thankyousir.

Commented by mind is power last updated on 18/Mar/20

withe pleasur

withepleasur

Terms of Service

Privacy Policy

Contact: info@tinkutara.com