Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 85061 by M±th+et£s last updated on 18/Mar/20

lim_(x→0) ((x tan2x−2x tan(x))/((1−cos(2x))^2 ))

limx0xtan2x2xtan(x)(1cos(2x))2

Commented by mathmax by abdo last updated on 18/Mar/20

let f(x)=((xtan(2x)−2x tan(x))/((1−cos(2x))^2 ))  we have   tanx =x+(x^3 /3) +o(x^3 ) and tan(2x) =2x +(8/3)x^3  +o(x^3 )  ⇒tanx ∼ x+(x^3 /3) and tan(2x)∼2x+(8/3)x^3   and  1−cos(2x)∼ (((2x)^2 )/2) =2x^2  ⇒f(x) ∼((2x^2  +(8/3)x^4 −2x^2 −(2/3)x^4 )/(4x^4 ))   ⇒f(x)∼ ((2x^4 )/(4x^4 )) =(1/2) ⇒lim_(x→0)   f(x)=(1/2)

letf(x)=xtan(2x)2xtan(x)(1cos(2x))2wehavetanx=x+x33+o(x3)andtan(2x)=2x+83x3+o(x3)tanxx+x33andtan(2x)2x+83x3and1cos(2x)(2x)22=2x2f(x)2x2+83x42x223x44x4f(x)2x44x4=12limx0f(x)=12

Commented by M±th+et£s last updated on 18/Mar/20

thanks

thanks

Commented by mathmax by abdo last updated on 18/Mar/20

you are welcome

youarewelcome

Answered by john santu last updated on 19/Mar/20

lim_(x→0)  ((x tan 2x−2x tan x)/((1−1+2sin^2 x)^2 )) =   (1/4) lim_(x→0)  ((x (tan 2x−2tan x))/(sin^4 x)) =   (1/4) lim_(x→0)  ((2tan x((1/(1−tan^2 x)) −1))/(sin^3 x)) =   (1/2) lim_(x→0)  ((tan^2 x)/(sin^2 x)) × lim_(x→0)  (1/(1−tan^2 x)) =  (1/2) ∴

limx0xtan2x2xtanx(11+2sin2x)2=14limx0x(tan2x2tanx)sin4x=14limx02tanx(11tan2x1)sin3x=12limx0tan2xsin2x×limx011tan2x=12

Commented by M±th+et£s last updated on 19/Mar/20

thank you sir

thankyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com