Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 85074 by ajfour last updated on 18/Mar/20

Commented by ajfour last updated on 19/Mar/20

If a cylindrical cavity be drilled  out of a hemisphere of radius R,  in the place shown; with a driller   of radius r, find fraction of  hemisphere material drilled out.

$${If}\:{a}\:{cylindrical}\:{cavity}\:{be}\:{drilled} \\ $$$${out}\:{of}\:{a}\:{hemisphere}\:{of}\:{radius}\:{R}, \\ $$$${in}\:{the}\:{place}\:{shown};\:{with}\:{a}\:{driller} \\ $$$$\:{of}\:{radius}\:{r},\:{find}\:{fraction}\:{of} \\ $$$${hemisphere}\:{material}\:{drilled}\:{out}. \\ $$

Answered by mr W last updated on 19/Mar/20

Commented by mr W last updated on 19/Mar/20

a=R−r  PM^2 =a^2 +ρ^2 −2aρ cos θ    length of cylinder at point P =l  l=2(√(R^2 −PM^2 ))=2(√(R^2 −a^2 −ρ^2 +2aρ cos θ))    dV=l dA=lρdρdθ=2ρ(√(R^2 −a^2 −ρ^2 +2aρ cos θ)) dρdθ  the volume of intersection from  sphere and cylinder with distance a:  generally:  V=4∫_0 ^( r) ρ∫_0 ^( π) (√(R^2 −a^2 −ρ^2 +2aρ cos θ)) dθdρ  in our case:  V=4∫_0 ^( r) ρ∫_0 ^( π) (√(r(2R−r)−ρ^2 +2(R−r)ρ cos θ)) dθdρ  .... maybe not integrable ?

$${a}={R}−{r} \\ $$$${PM}^{\mathrm{2}} ={a}^{\mathrm{2}} +\rho^{\mathrm{2}} −\mathrm{2}{a}\rho\:\mathrm{cos}\:\theta \\ $$$$ \\ $$$${length}\:{of}\:{cylinder}\:{at}\:{point}\:{P}\:={l} \\ $$$${l}=\mathrm{2}\sqrt{{R}^{\mathrm{2}} −{PM}^{\mathrm{2}} }=\mathrm{2}\sqrt{{R}^{\mathrm{2}} −{a}^{\mathrm{2}} −\rho^{\mathrm{2}} +\mathrm{2}{a}\rho\:\mathrm{cos}\:\theta} \\ $$$$ \\ $$$${dV}={l}\:{dA}={l}\rho{d}\rho{d}\theta=\mathrm{2}\rho\sqrt{{R}^{\mathrm{2}} −{a}^{\mathrm{2}} −\rho^{\mathrm{2}} +\mathrm{2}{a}\rho\:\mathrm{cos}\:\theta}\:{d}\rho{d}\theta \\ $$$${the}\:{volume}\:{of}\:{intersection}\:{from} \\ $$$${sphere}\:{and}\:{cylinder}\:{with}\:{distance}\:{a}: \\ $$$${generally}: \\ $$$${V}=\mathrm{4}\int_{\mathrm{0}} ^{\:{r}} \rho\int_{\mathrm{0}} ^{\:\pi} \sqrt{{R}^{\mathrm{2}} −{a}^{\mathrm{2}} −\rho^{\mathrm{2}} +\mathrm{2}{a}\rho\:\mathrm{cos}\:\theta}\:{d}\theta{d}\rho \\ $$$${in}\:{our}\:{case}: \\ $$$${V}=\mathrm{4}\int_{\mathrm{0}} ^{\:{r}} \rho\int_{\mathrm{0}} ^{\:\pi} \sqrt{{r}\left(\mathrm{2}{R}−{r}\right)−\rho^{\mathrm{2}} +\mathrm{2}\left({R}−{r}\right)\rho\:\mathrm{cos}\:\theta}\:{d}\theta{d}\rho \\ $$$$....\:{maybe}\:{not}\:{integrable}\:? \\ $$

Commented by ajfour last updated on 19/Mar/20

Thanks Sir, it was great following  your solution!

$${Thanks}\:{Sir},\:{it}\:{was}\:{great}\:{following} \\ $$$${your}\:{solution}! \\ $$

Commented by mr W last updated on 19/Mar/20

thanks to you too sir!  i have problem to solve the final  integral. do you have an idea?

$${thanks}\:{to}\:{you}\:{too}\:{sir}! \\ $$$${i}\:{have}\:{problem}\:{to}\:{solve}\:{the}\:{final} \\ $$$${integral}.\:{do}\:{you}\:{have}\:{an}\:{idea}? \\ $$

Commented by mr W last updated on 22/Mar/20

an other attempt:  V=4∫_(−r) ^( r) ∫_0 ^(√(r^2 −x^2 )) ∫_0 ^(√(R^2 −(a−x)^2 −y^2 )) dzdydx  =4∫_(−r) ^( r) ∫_0 ^(√(r^2 −x^2 )) (√(R^2 −(a−x)^2 −y^2 ))dydx  =2∫_(−r) ^( r) {[R^2 −(a−x)^2 ]sin^(−1) ((√(r^2 −x^2 ))/(√(R^2 −(a−x)^2 )))+(√((r^2 −x^2 )[R^2 −r^2 −(a−x)^2 +x^2 ]))}dx  =2∫_(−r) ^( r) [(R^2 −a^2 +2ax−x^2 )sin^(−1) ((√(r^2 −x^2 ))/(√(R^2 −a^2 +2ax−x^2 )))+(√((r^2 −x^2 )(R^2 −r^2 −a^2 +2ax)))]dx

$${an}\:{other}\:{attempt}: \\ $$$${V}=\mathrm{4}\int_{−{r}} ^{\:{r}} \int_{\mathrm{0}} ^{\sqrt{{r}^{\mathrm{2}} −{x}^{\mathrm{2}} }} \int_{\mathrm{0}} ^{\sqrt{{R}^{\mathrm{2}} −\left({a}−{x}\right)^{\mathrm{2}} −{y}^{\mathrm{2}} }} {dzdydx} \\ $$$$=\mathrm{4}\int_{−{r}} ^{\:{r}} \int_{\mathrm{0}} ^{\sqrt{{r}^{\mathrm{2}} −{x}^{\mathrm{2}} }} \sqrt{{R}^{\mathrm{2}} −\left({a}−{x}\right)^{\mathrm{2}} −{y}^{\mathrm{2}} }{dydx} \\ $$$$=\mathrm{2}\int_{−{r}} ^{\:{r}} \left\{\left[{R}^{\mathrm{2}} −\left({a}−{x}\right)^{\mathrm{2}} \right]\mathrm{sin}^{−\mathrm{1}} \frac{\sqrt{{r}^{\mathrm{2}} −{x}^{\mathrm{2}} }}{\sqrt{{R}^{\mathrm{2}} −\left({a}−{x}\right)^{\mathrm{2}} }}+\sqrt{\left({r}^{\mathrm{2}} −{x}^{\mathrm{2}} \right)\left[{R}^{\mathrm{2}} −{r}^{\mathrm{2}} −\left({a}−{x}\right)^{\mathrm{2}} +{x}^{\mathrm{2}} \right]}\right\}{dx} \\ $$$$=\mathrm{2}\int_{−{r}} ^{\:{r}} \left[\left({R}^{\mathrm{2}} −{a}^{\mathrm{2}} +\mathrm{2}{ax}−{x}^{\mathrm{2}} \right)\mathrm{sin}^{−\mathrm{1}} \frac{\sqrt{{r}^{\mathrm{2}} −{x}^{\mathrm{2}} }}{\sqrt{{R}^{\mathrm{2}} −{a}^{\mathrm{2}} +\mathrm{2}{ax}−{x}^{\mathrm{2}} }}+\sqrt{\left({r}^{\mathrm{2}} −{x}^{\mathrm{2}} \right)\left({R}^{\mathrm{2}} −{r}^{\mathrm{2}} −{a}^{\mathrm{2}} +\mathrm{2}{ax}\right)}\right]{dx} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com