Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 85414 by M±th+et£s last updated on 21/Mar/20

∫(1/(1+(√(cos(x))) )) dx

11+cos(x)dx

Commented by M±th+et£s last updated on 21/Mar/20

∫_0 ^(π/2) (1/(1+(√(cos(x))))) dx   typo....

0π211+cos(x)dxtypo....

Answered by mind is power last updated on 23/Mar/20

∫_0 ^(π/2) (((1−(√(cos(x))))(1+cos(x)))/(1−cos^2 (x)))dx  =∫_0 ^(π/2) ((2cos^2 ((x/2)))/(sin^2 (x))).(1−(√(cos(x))))dx  =∫_0 ^(π/2) ((2cos^2 ((x/2))(1−(√(cos(x))))dx)/(4sin^2 ((x/2))cos^2 ((x/2))))   =∫_0 ^(π/2) (((1−(√(cos(x)))))/(2sin^2 ((x/2))))dx by part   u′=(1/(2sin^2 ((x/2))))=(1/2)(cot^2 ((x/2))+1)⇒u=−cot((x/2))  =[−cot((x/2))(1−(√(cos(x))))]_0 ^(π/2) +∫_0 ^(π/2) ((cot((x/2)).sin(x))/(2(√(cos(x)))))dx  =−1+∫_0 ^(π/2) ((cos((x/2))sin(x))/(sin((x/2)).2(√(cos(x))))) =−1+∫_0 ^(π/2) ((cos^2 ((x/2)))/(√(cos(x))))..A  A=−1+∫_0 ^(π/2) ((1+cos(x))/(2(√(cos(x)))))  =−1+∫_0 ^(π/2) ((((1/2)−sin((x/2))cos((x/2)))/(√(sin(x))))dx  =−1+∫_0 ^(π/2) ((1+sin(x))/(2(√(sin(x)))))dx=−1+(1/2){∫_0 ^(π/2) (dx/(√(sin(x))))+∫_0 ^(π/2) (√(sin(x)))dx}  ∫_0 ^(π/2) (dx/(√(sin(x))))  ∫_0 ^(π/2) (dx/(√(2sin((x/2))cos((x/2)))))=∫_0 ^(π/2) (dx/(√(1−(sin((x/2))−cos((x/2)))^2 )))  =∫_0 ^(π/2) (dx/(√(1−2sin^2 ((π/4)−(x/2)))))=∫_0 ^(π/4) ((2dr)/(√(1−2sin^2 (r))))=2F((π/4)∣2)  ∫_0 ^(π/2) (√(sin(x)))dx=∫_0 ^(π/2) (√(1−(sin((x/2))−cos((x/2)))^2 ))dx  =∫_0 ^(π/2) (√(1−2sin^2 ((π/4)−(x/2))))dx  =2∫_0 ^(π/4) (√(1−2sin^2 (r)))dr=2E((π/4)∣2)  =−1+2(E((π/4)∣2)+F((π/4)∣2))

0π2(1cos(x))(1+cos(x))1cos2(x)dx=0π22cos2(x2)sin2(x).(1cos(x))dx=0π22cos2(x2)(1cos(x))dx4sin2(x2)cos2(x2)=0π2(1cos(x))2sin2(x2)dxbypartu=12sin2(x2)=12(cot2(x2)+1)u=cot(x2)=[cot(x2)(1cos(x))]0π2+0π2cot(x2).sin(x)2cos(x)dx=1+0π2cos(x2)sin(x)sin(x2).2cos(x)=1+0π2cos2(x2)cos(x)..AA=1+0π21+cos(x)2cos(x)=1+0π2(12sin(x2)cos(x2)sin(x)dx=1+0π21+sin(x)2sin(x)dx=1+12{0π2dxsin(x)+0π2sin(x)dx}0π2dxsin(x)0π2dx2sin(x2)cos(x2)=0π2dx1(sin(x2)cos(x2))2=0π2dx12sin2(π4x2)=0π42dr12sin2(r)=2F(π42)0π2sin(x)dx=0π21(sin(x2)cos(x2))2dx=0π212sin2(π4x2)dx=20π412sin2(r)dr=2E(π42)=1+2(E(π42)+F(π42))

Commented by M±th+et£s last updated on 23/Mar/20

thank you so much sir

thankyousomuchsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com