All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 85414 by M±th+et£s last updated on 21/Mar/20
∫11+cos(x)dx
Commented by M±th+et£s last updated on 21/Mar/20
∫0π211+cos(x)dxtypo....
Answered by mind is power last updated on 23/Mar/20
∫0π2(1−cos(x))(1+cos(x))1−cos2(x)dx=∫0π22cos2(x2)sin2(x).(1−cos(x))dx=∫0π22cos2(x2)(1−cos(x))dx4sin2(x2)cos2(x2)=∫0π2(1−cos(x))2sin2(x2)dxbypartu′=12sin2(x2)=12(cot2(x2)+1)⇒u=−cot(x2)=[−cot(x2)(1−cos(x))]0π2+∫0π2cot(x2).sin(x)2cos(x)dx=−1+∫0π2cos(x2)sin(x)sin(x2).2cos(x)=−1+∫0π2cos2(x2)cos(x)..AA=−1+∫0π21+cos(x)2cos(x)=−1+∫0π2(12−sin(x2)cos(x2)sin(x)dx=−1+∫0π21+sin(x)2sin(x)dx=−1+12{∫0π2dxsin(x)+∫0π2sin(x)dx}∫0π2dxsin(x)∫0π2dx2sin(x2)cos(x2)=∫0π2dx1−(sin(x2)−cos(x2))2=∫0π2dx1−2sin2(π4−x2)=∫0π42dr1−2sin2(r)=2F(π4∣2)∫0π2sin(x)dx=∫0π21−(sin(x2)−cos(x2))2dx=∫0π21−2sin2(π4−x2)dx=2∫0π41−2sin2(r)dr=2E(π4∣2)=−1+2(E(π4∣2)+F(π4∣2))
Commented by M±th+et£s last updated on 23/Mar/20
thankyousomuchsir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com