Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 85456 by jagoll last updated on 22/Mar/20

∫ (√(csc x )) dx?

cscxdx?

Commented by jagoll last updated on 22/Mar/20

thank sir

thanksir

Commented by MJS last updated on 22/Mar/20

sadly this is wrong.  t=(√(sin x)) → dx=((2(√(sin x)))/(cos x))dt=((2t)/(√(1−t^4 )))dt  ⇒ 2∫(dt/(√(1−t^4 ))) and we can′t solve this

sadlythisiswrong.t=sinxdx=2sinxcosxdt=2t1t4dt2dt1t4andwecantsolvethis

Commented by MJS last updated on 22/Mar/20

you should always test your solutions  (d/dx)[2arcsin (√(sin x))]=((cos x)/(√(sin x −sin^2  x)))≠(1/(√(sin x)))

youshouldalwaystestyoursolutionsddx[2arcsinsinx]=cosxsinxsin2x1sinx

Commented by jagoll last updated on 22/Mar/20

so what the correct answer sir?

sowhatthecorrectanswersir?

Commented by MJS last updated on 22/Mar/20

I cannot solve it  there′s a solution using Γ(x) somehow, it had  been on this forum, maybe a year ago, I can′t  find it

IcannotsolveittheresasolutionusingΓ(x)somehow,ithadbeenonthisforum,maybeayearago,Icantfindit

Commented by jagoll last updated on 22/Mar/20

thank you sir

thankyousir

Commented by MJS last updated on 22/Mar/20

found this:  ∫(dx/(√(sin x)))=       [t=x−(π/2) → dx=dt]  ∫(dt/(√(cos t)))=∫(dt/(√(1−2sin^2  (t/2))))=  =F ((t/2)∣2) =F ((x/2)−(π/4)∣2) +C  it′s an eliptic integral  but I cannot explain, it′s not my solution

foundthis:dxsinx=[t=xπ2dx=dt]dtcost=dt12sin2t2==F(t22)=F(x2π42)+CitsanelipticintegralbutIcannotexplain,itsnotmysolution

Terms of Service

Privacy Policy

Contact: info@tinkutara.com