Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 85461 by oustmuchiya@gmail.com last updated on 22/Mar/20

Commented by jagoll last updated on 22/Mar/20

(2) the line x = 5−2y   intersect the curve y^2 +xy = 6  ⇒ y^2 +y(5−2y) = 6  −y^2 +5y = 6 ⇒y^2 −5y+6=0  (y−3)(y−2)=0  A(−1,3) & B(1,2)

(2)thelinex=52yintersectthecurvey2+xy=6y2+y(52y)=6y2+5y=6y25y+6=0(y3)(y2)=0A(1,3)&B(1,2)

Commented by jagoll last updated on 22/Mar/20

(4a)C_2 ^4  × C_2 ^2  = ((4×3)/(2×1)) × 1 = 6  at least 2 girls = C_2 ^2  × C_2 ^4  = 6

(4a)C24×C22=4×32×1×1=6atleast2girls=C22×C24=6

Commented by jagoll last updated on 22/Mar/20

(4b)COMPUTER   = 8!

(4b)COMPUTER=8!

Commented by mathmax by abdo last updated on 22/Mar/20

2)  we solve   { ((x+2y=5)),((xy+y^2 =6 )) :}  ⇒  { ((x=−2y+5)),(((−2y+5)y +y^2 −6=0)) :}  ⇒ { ((x=−2y +5)),((−2y^2 +5y +y^2 −6 =0)) :}  ⇒ { ((x=−2y+5)),((y^2 −5y +6=0)) :}  y^2 −5y+6 =0→Δ=25−24=1 ⇒y_1 =((5+1)/2)=3  y_2 =((5−1)/2) =2  y=3⇒x=−1 and  y=2 ⇒x=1  so the pnts of intersection are  A(−1,3) and B(1,2)

2)wesolve{x+2y=5xy+y2=6{x=2y+5(2y+5)y+y26=0{x=2y+52y2+5y+y26=0{x=2y+5y25y+6=0y25y+6=0Δ=2524=1y1=5+12=3y2=512=2y=3x=1andy=2x=1sothepntsofintersectionareA(1,3)andB(1,2)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com