All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 85513 by niroj last updated on 22/Mar/20
Solvethefollowingequation:(dydx)2+2ycotxdydx=y2
Answered by mr W last updated on 22/Mar/20
dydx=−ycotx±y2cot2x+y2dydx=−(cosx±1)ysinxdyy=−(cosx±1)dxsinx∫dyy=−∫(cosx±1)dxsinx∫dyy=∫(cosx±1)d(cosx)1−cos2xlny=∫(u±1)du1−u2lny=∫(u+1)du1−u2lny=∫du1−ulny=−ln(1−u)+Clny(1−cosx)=C⇒y=C1−cosxlny=∫(u−1)du1−u2lny=−∫du1+ulny=−ln(1+u)+Clny(1+cosx)=C⇒y=C1+cosx
Commented by mr W last updated on 22/Mar/20
check:y=C1+cosxdydx=Csinx(1+cosx)2(dydx)2=C2sin2x(1+cosx)4=C2(1−cosx)(1+cosx)3(dydx)2+2ycotx(dydx)=C2(1−cosx)(1+cosx)3+2(C1+cosx)cosxsinx(Csinx(1+cosx)2)=C2(1−cosx)(1+cosx)3+2C2cosx(1+cosx)3=C2(1+cosx)2=y2
Commented by niroj last updated on 22/Mar/20
thankyoumr.wnicesolution.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com