Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 85540 by M±th+et£s last updated on 22/Mar/20

find the range  y=((x+[x])/(1−[x]+x))

findtherangey=x+[x]1[x]+x

Answered by mr W last updated on 23/Mar/20

for x≥0:  let x=n+d with 0≤d<1  y=((x+[x])/(1−[x]+x))=((2n+d)/(1+d))=1+((2n−1)/(1+d))  for n=0:  y=1−(1/(1+d))≥1−(1/1)=0  y=1−(1/(1+d))<1−(1/2)=(1/2)  ⇒0≤y<(1/2)  for n≥1:  y=1+((2n−1)/(1+d))≤1+((2n−1)/1)=2n  y=1+((2n−1)/(1+d))>1+((2n−1)/(1+1))=n+(1/2)  ⇒n+(1/2)<y≤2n  ⇒1.5<y≤2  ⇒2.5<y≤4  ⇒3.5<y≤6  ⇒4.5<y≤8  ...  ⇒y∈[0, (1/2)) ∨ (1.5, 2] ∨ (2.5, +∞)   ...(i)  for x<0:  let x=−n−d with 0≤d<1  y=((x+[x])/(1−[x]+x))=1−((2n+1)/(1−d))  y=1−((2n+1)/(1−d))≤1−((2n+1)/1)=−2n  y=1−((2n+1)/(1−d))>1−((2n+1)/0)=−∞  ⇒−∞<y≤2n  ⇒y∈(−∞,0]   ...(ii)    from (i) and (ii) we get range  y∈(−∞, (1/2)) ∨ ((3/2), 2] ∨ ((5/2), +∞)

forx0:letx=n+dwith0d<1y=x+[x]1[x]+x=2n+d1+d=1+2n11+dforn=0:y=111+d111=0y=111+d<112=120y<12forn1:y=1+2n11+d1+2n11=2ny=1+2n11+d>1+2n11+1=n+12n+12<y2n1.5<y22.5<y43.5<y64.5<y8...y[0,12)(1.5,2](2.5,+)...(i)forx<0:letx=ndwith0d<1y=x+[x]1[x]+x=12n+11dy=12n+11d12n+11=2ny=12n+11d>12n+10=<y2ny(,0]...(ii)from(i)and(ii)wegetrangey(,12)(32,2](52,+)

Commented by M±th+et£s last updated on 23/Mar/20

thank you so much sir

thankyousomuchsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com