Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 85568 by jagoll last updated on 23/Mar/20

∫ _0 ^(2π)  (dx/((√2)−cos x))

2π0dx2cosx

Commented by jagoll last updated on 23/Mar/20

I = ∫ _0 ^(2π)  (dx/((√2)−cos x))  let x = 2π−t   I = ∫ _(2π) ^0  ((−dt)/((√2)−cos (2π−t)))  I = ∫ _0 ^(2π)  (dt/((√2)−cos t))   I = I ( not valid)

I=2π0dx2cosxletx=2πtI=02πdt2cos(2πt)I=2π0dt2costI=I(notvalid)

Commented by mathmax by abdo last updated on 23/Mar/20

A =∫_0 ^(2π)  (dx/((√2)−cosx))  ⇒ A =∫_0 ^(2π)  (dx/((√2)−((e^(ix)  +e^(−ix) )/2)))  =∫_0 ^(2π)  ((2dx)/(2(√2)−e^(ix) −e^(−ix) )) =_(e^(ix) =z)   ∫_(∣z∣=1)      (2/(2(√2)−z−z^(−1) )) (dz/(iz))  =∫_(∣z∣=1)  ((−2idz)/(2(√2)z−z^2 −1)) =∫_(∣z∣=1)   ((2i dz)/(z^2 −2(√2)z +1))  =∫_(∣z∣=1)   ϕ(z)dz  with ϕ(z)=((2i)/(z^2 −2(√2)z +1)) poles of ϕ?  z^2 −2(√2)z +1 =0 →Δ^′ =2−1 =1 ⇒z_1 =1+(√2) and z_2 =−1+(√2)  ⇒ϕ(z)=((2i)/((z−z_1 )(z−z_2 )))  ∣z_1 ∣−1 =1+(√2)−1 >0  (out of circle)  ∣z_2 ∣−1 =∣(√2)−1∣−1 =(√2)−2 <0  ⇒  ∫_(∣z∣=1)   ϕ(z)dz =2iπ Res(ϕ,z_2 ) =2iπ ×((2i)/((z_2 −z_1 ))) =((−4π)/(−2)) =2π  ⇒A =2π

A=02πdx2cosxA=02πdx2eix+eix2=02π2dx22eixeix=eix=zz∣=1222zz1dziz=z∣=12idz22zz21=z∣=12idzz222z+1=z∣=1φ(z)dzwithφ(z)=2iz222z+1polesofφ?z222z+1=0Δ=21=1z1=1+2andz2=1+2φ(z)=2i(zz1)(zz2)z11=1+21>0(outofcircle)z21=∣211=22<0z∣=1φ(z)dz=2iπRes(φ,z2)=2iπ×2i(z2z1)=4π2=2πA=2π

Answered by mind is power last updated on 23/Mar/20

=∫_0 ^π (dx/((√2)−cos(x)))+∫_π ^(2π) (dx/((√2)−cos(x)))  t=π+x in 2nd⇒  =∫_0 ^π (dx/((√2)−cos(x)))+(dx/((√2)+cos(x)))  =∫_0 ^π ((2(√2)dx)/(2−cos^2 (x)))=2(√2)∫_0 ^(π/2) (dx/(2−cos^2 (x)))+2(√2)∫_(π/2) ^π (dx/(2−cos^2 (x)))  t=(π/2)+x in 2nd  ⇒=2(√(2{))∫_0 ^(π/2) (dx/(1+sin^2 (x)))+∫_0 ^(π/2) (dx/(1+cos^2 ((x/2))))  =2(√2)∫_0 ^(π/2) (1/(sin^2 (x))).((dx/((1/(sin^2 (x)))+1)))+2(√2)∫_0 ^(π/2) (dx/(cos^2 (x))).(1/(((1/(cos^2 (x)))+1)))  =2(√2)∫_0 ^(π/2) ((−d(cot(x)))/(2+cot^2 (x)))+2(√2)∫_0 ^(π/2) ((d(tg(x)))/(2+tg^2 (x)))  =2([_0 ^(π/2) −arctan(((cot(x))/(√2)))+arctan(((tg(x))/(√2))))  =2.(π/2)+2.(π/2)=2π

=0πdx2cos(x)+π2πdx2cos(x)t=π+xin2nd=0πdx2cos(x)+dx2+cos(x)=0π22dx2cos2(x)=220π2dx2cos2(x)+22π2πdx2cos2(x)t=π2+xin2nd⇒=22{0π2dx1+sin2(x)+0π2dx1+cos2(x2)=220π21sin2(x).(dx1sin2(x)+1)+220π2dxcos2(x).1(1cos2(x)+1)=220π2d(cot(x))2+cot2(x)+220π2d(tg(x))2+tg2(x)=2([0π2arctan(cot(x)2)+arctan(tg(x)2))=2.π2+2.π2=2π

Commented by jagoll last updated on 23/Mar/20

sir if by King formula valid?

sirifbyKingformulavalid?

Commented by mind is power last updated on 23/Mar/20

on french i didn′t remember studied   what is king  formula ?

onfrenchididntrememberstudiedwhatiskingformula?

Answered by mind is power last updated on 23/Mar/20

=∫_0 ^(2π) ((2dx)/(2(√2)−(e^(ix) +e^(−ix) )))  2nd Way  =∫_0 ^(2π) ((2e^(ix) )/(−e^(2ix) +2(√2)e^(ix) −1))  e^(ix) =z⇒  =∫_C ((2idz)/((z−((√2)−1))(z−((√2)+1))))  only (√2)−1∈D(0,1)  =2iπ.lim_(z→(√2)−1)  (z−((√2)−1))((2i)/((z−((√2)−1))(z−((√2)+1))))  =2iπ.((2i)/(−2))=2π

=02π2dx22(eix+eix)2ndWay=02π2eixe2ix+22eix1eix=z=C2idz(z(21))(z(2+1))only21D(0,1)=2iπ.limz21(z(21))2i(z(21))(z(2+1))=2iπ.2i2=2π

Answered by mind is power last updated on 23/Mar/20

you can always  dolve ∫((p(sin(t),cos(t)))/(Q(sin(t),cos(t))))dt  withe P snd Q∈R[x][y]  by tg((t/2))=x

youcanalwaysdolvep(sin(t),cos(t))Q(sin(t),cos(t))dtwithePsndQR[x][y]bytg(t2)=x

Commented by jagoll last updated on 23/Mar/20

oo yes weirstrass sir

ooyesweirstrasssir

Answered by MJS last updated on 23/Mar/20

∫(dx/((√2)−cos  x))=       [t=tan (x/2) →dx=(2/(t^2 +1))dt]  =−2(1−(√2))∫(dt/(t^2 +3−2(√2)))=  =2arctan ((1+(√2))t) =  =2arctan ((1+(√2))tan (x/2)) +C

dx2cosx=[t=tanx2dx=2t2+1dt]=2(12)dtt2+322==2arctan((1+2)t)==2arctan((1+2)tanx2)+C

Commented by jagoll last updated on 23/Mar/20

sir if x =0 ⇒ t = 0  if x = 2π ⇒ t = 0   does mean : 2(√2)−1∫ _(0 )^0  (dt/(t^2 +3−2(√2)))  = 0 ?  what wrong sir?

sirifx=0t=0ifx=2πt=0doesmean:22100dtt2+322=0?whatwrongsir?

Commented by MJS last updated on 23/Mar/20

the given function is symmetric about x=π  ⇒ ∫_0 ^(2π) f(x)dx=2∫_0 ^π f(x)dx

thegivenfunctionissymmetricaboutx=π2π0f(x)dx=2π0f(x)dx

Commented by MJS last updated on 23/Mar/20

the borders for t are [0; +∞[

thebordersfortare[0;+[

Commented by jagoll last updated on 23/Mar/20

2×2 [arc tan ((1+(√2))tan(x/2) )]_0 ^( (π/2))    4 × [ arc tan ((1+(√2)) tan (π/4))]  4× [ arc tan ((1+(√2) ))] ?

Missing \left or extra \right4×[arctan((1+2)tanπ4)]4×[arctan((1+2))]?

Commented by jagoll last updated on 23/Mar/20

please sir. completely your answer  sir

pleasesir.completelyyouranswersir

Commented by jagoll last updated on 23/Mar/20

or 4×[arc tan ((1+(√2))t]_( 0) ^∞   4 ×[ arc tan (∞) − arc tan (0) ]  4×(π/2) = 2π

Missing \left or extra \right4×[arctan()arctan(0)]4×π2=2π

Commented by MJS last updated on 23/Mar/20

∫_0 ^(2π) (dx/((√2)−cos  x))=2∫_0 ^π (dx/((√2)−cos  x))=  =2[2arctan ((1+(√2))tan (x/2))]_0 ^π =  =4lim_(x→π^− )  (arctan ((1+(√2))tan (x/2))) =4×(π/2)=2π

2π0dx2cosx=2π0dx2cosx==2[2arctan((1+2)tanx2)]0π==4limxπ(arctan((1+2)tanx2))=4×π2=2π

Commented by jagoll last updated on 23/Mar/20

thank you sir

thankyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com