Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 85596 by M±th+et£s last updated on 23/Mar/20

∫(((√(x+1))−1)/((√(x−1))+1)) dx

x+11x1+1dx

Commented by mathmax by abdo last updated on 23/Mar/20

A =∫  (((√(x+1))−1)/((√(x−1))+1))dx    chagement (√(x−1))+1 =t give (√(x−1))=t−1 ⇒  x−1 =(t−1)^2  ⇒dx =2(t−1)dt ⇒  A =∫(((√(1+(t−1)^2 ))−1)/t)2(t−1)dt =2 ∫ ((t−1)/t)(√((t−1)^2 +1))dt  =2 ∫(1−(1/t))(√((t−1)^2  +1))dt =2∫(√((t−1)^2 +1))dt−2 ∫  ((√((t−1)^2 +1))/t)dt  ∫ (√(1+(t−1)^2 ))dt =_(t−1=sh(u))   ∫ ch^2 (u)du  =(1/2)∫ (1+ch(2u))du =(u/2) +(1/4)sh(2u) +c_1   =(u/2) +(1/2)sh(u)ch(u) +c_1 =(1/2)ln(t−1 +(√(1+(t−1)^2 )))  +(1/2)(t−1)(√(1+(t−1)^2 ))+c_1 =(1/2)ln((√(x−1))+(√(1+x−1)))  +(1/2)(√(x−1))(√(1+x−1))+c_1 =(1/2)ln((√(x−1))+(√x))+(1/2)(√(x−1))(√x) +c_1   ∫ ((√(1+(t−1)^2 ))/t)dt =_(t−1=sh(u))     ∫  ((chu)/(1+sh(u)))ch(u)du  =(1/2)∫  (((1+ch(2u)))/(1+sh(u)))du  =(1/2)∫  (((1+((e^(2u)  +e^(−2u) )/2)))/(1+((e^u −e^(−u) )/2)))du  =(1/2)∫  ((2 +e^(2u) +e^(−2u) )/(2+e^u −e^(−u) ))du   =(1/2)∫  ((2e^(2u) +e^(4u) +1)/(2e^(2u)  +e^(3u) −e^u ))du  =_(e^u =z)      (1/2)∫  ((z^4  +2z^2  +1)/(z^3  +2z^2 −z)) (dz/z) =(1/2)∫   ((z^4  +2z^2  +1)/(z^4  +2z^3 −z^2 ))dz  =(1/2)∫  ((z^4  +2z^3 −z^2  +2z^2  +1−2z^3 +z^2  )/(z^4 +2z^3  −z^2 ))dz  =(1/2)∫dz +(1/2)∫ ((−2z^3 +3z^2  +1)/(z^4 +2z^3 −z^2 ))dz let decompose   F(z) =((−2z^3  +3z^2 +1)/(z^2 (z^2  +2z−1))) ⇒F(z)=((−2z^3  +3z^2  +1)/(z^2 ((z+1)^2 −2)))  =((−2z^3  +3z^2  +1)/(z^2 (z+1−(√2))(z+1+(√2)))) =(a/z) +(b/z^2 ) +(c/(z+1−(√2))) +(d/(z+1+(√2)))  ⇒∫ F(z)dz =aln∣z∣ −(b/z) +cln∣z+1−(√2)∣+dln∣z+1+(√2)∣ +C  rest calculus of coefgicients...be continued..

A=x+11x1+1dxchagementx1+1=tgivex1=t1x1=(t1)2dx=2(t1)dtA=1+(t1)21t2(t1)dt=2t1t(t1)2+1dt=2(11t)(t1)2+1dt=2(t1)2+1dt2(t1)2+1tdt1+(t1)2dt=t1=sh(u)ch2(u)du=12(1+ch(2u))du=u2+14sh(2u)+c1=u2+12sh(u)ch(u)+c1=12ln(t1+1+(t1)2)+12(t1)1+(t1)2+c1=12ln(x1+1+x1)+12x11+x1+c1=12ln(x1+x)+12x1x+c11+(t1)2tdt=t1=sh(u)chu1+sh(u)ch(u)du=12(1+ch(2u))1+sh(u)du=12(1+e2u+e2u2)1+eueu2du=122+e2u+e2u2+eueudu=122e2u+e4u+12e2u+e3ueudu=eu=z12z4+2z2+1z3+2z2zdzz=12z4+2z2+1z4+2z3z2dz=12z4+2z3z2+2z2+12z3+z2z4+2z3z2dz=12dz+122z3+3z2+1z4+2z3z2dzletdecomposeF(z)=2z3+3z2+1z2(z2+2z1)F(z)=2z3+3z2+1z2((z+1)22)=2z3+3z2+1z2(z+12)(z+1+2)=az+bz2+cz+12+dz+1+2F(z)dz=alnzbz+clnz+12+dlnz+1+2+Crestcalculusofcoefgicients...becontinued..

Answered by MJS last updated on 23/Mar/20

∫(((√(x+1))−1)/((√(x−1))+1))dx=       [t=(√(x−1)) → dx=2(√(x−1))dt]  =2∫((t(√(t^2 +2))−t)/(t+1))dt=  =−2∫((√(t^2 +2))/(t+1))dt+2∫(√(t^2 +2))dt+2∫(dt/(t+1))−2∫dt    −2∫dt=−2t=−2(√(x−1)) •  2∫(dt/(t+1))=2ln (t+1) =2ln ((√(x−1))+1) •  2∫(√(t^2 +2))dt=t(√(t^2 +2))+2ln (t+(√(t^2 +2))) =       =(√(x−1))(√(x+1))+2ln ((√(x−1))+(√(x+1))) •    −2∫((√(t^2 +2))/(t+1))dt=       I prefer t=(√2)sinh (ln u) to avoid another step       [u=((t+(√(t^2 +2)))/(√2)) → dt=((√(2(t^2 +2)))/(t+(√t^2 )+2))du=((u^2 +1)/((√2)u^2 ))du]  =−(√2)∫(((u^2 +1)^2 )/(u^2 (u^2 +(√2)u−1)))du=  =−(√2)∫(((u^2 +1)^2 )/(u^2 (u+(((√2)+(√6))/2))(u+(((√2)−(√6))/2))))du=  =2(√3)∫(du/(u+(((√2)+(√6))/2)))−2(√3)∫(du/(u+(((√2)−(√6))/2)))+2∫(du/u)+(√2)∫(du/u^2 )−(√2)∫du=  =2(√3)ln (u+(((√2)+(√6))/2)) −2(√3)ln (u+(((√2)−(√6))/2)) +2ln u −((√2)/u)−(√2)u=  =2(√3)ln ((2u+(√2)+(√6))/(2u+(√2)−(√6))) +2ln u −(((√2)(u^2 +1))/u)=  =2(√3)ln ((2((√(x−1))+(√(x+1)))+(√2)+(√6))/(2((√(x−1))+(√(x+1)))+(√2)−(√6)))+2ln ((√(x−1))+(√(x+1))) −2(√(x+1)) •    ⇒  ∫(((√(x+1))−1)/((√(x−1))+1))dx=the sum of the marked terms •  please check for typos

x+11x1+1dx=[t=x1dx=2x1dt]=2tt2+2tt+1dt==2t2+2t+1dt+2t2+2dt+2dtt+12dt2dt=2t=2x12dtt+1=2ln(t+1)=2ln(x1+1)2t2+2dt=tt2+2+2ln(t+t2+2)==x1x+1+2ln(x1+x+1)2t2+2t+1dt=Iprefert=2sinh(lnu)toavoidanotherstep[u=t+t2+22dt=2(t2+2)t+t2+2du=u2+12u2du]=2(u2+1)2u2(u2+2u1)du==2(u2+1)2u2(u+2+62)(u+262)du==23duu+2+6223duu+262+2duu+2duu22du==23ln(u+2+62)23ln(u+262)+2lnu2u2u==23ln2u+2+62u+26+2lnu2(u2+1)u==23ln2(x1+x+1)+2+62(x1+x+1)+26+2ln(x1+x+1)2x+1x+11x1+1dx=thesumofthemarkedtermspleasecheckfortypos

Commented by M±th+et£s last updated on 23/Mar/20

god bless you and thank you sir there is  no typos

godblessyouandthankyousirthereisnotypos

Terms of Service

Privacy Policy

Contact: info@tinkutara.com