All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 85596 by M±th+et£s last updated on 23/Mar/20
∫x+1−1x−1+1dx
Commented by mathmax by abdo last updated on 23/Mar/20
A=∫x+1−1x−1+1dxchagementx−1+1=tgivex−1=t−1⇒x−1=(t−1)2⇒dx=2(t−1)dt⇒A=∫1+(t−1)2−1t2(t−1)dt=2∫t−1t(t−1)2+1dt=2∫(1−1t)(t−1)2+1dt=2∫(t−1)2+1dt−2∫(t−1)2+1tdt∫1+(t−1)2dt=t−1=sh(u)∫ch2(u)du=12∫(1+ch(2u))du=u2+14sh(2u)+c1=u2+12sh(u)ch(u)+c1=12ln(t−1+1+(t−1)2)+12(t−1)1+(t−1)2+c1=12ln(x−1+1+x−1)+12x−11+x−1+c1=12ln(x−1+x)+12x−1x+c1∫1+(t−1)2tdt=t−1=sh(u)∫chu1+sh(u)ch(u)du=12∫(1+ch(2u))1+sh(u)du=12∫(1+e2u+e−2u2)1+eu−e−u2du=12∫2+e2u+e−2u2+eu−e−udu=12∫2e2u+e4u+12e2u+e3u−eudu=eu=z12∫z4+2z2+1z3+2z2−zdzz=12∫z4+2z2+1z4+2z3−z2dz=12∫z4+2z3−z2+2z2+1−2z3+z2z4+2z3−z2dz=12∫dz+12∫−2z3+3z2+1z4+2z3−z2dzletdecomposeF(z)=−2z3+3z2+1z2(z2+2z−1)⇒F(z)=−2z3+3z2+1z2((z+1)2−2)=−2z3+3z2+1z2(z+1−2)(z+1+2)=az+bz2+cz+1−2+dz+1+2⇒∫F(z)dz=aln∣z∣−bz+cln∣z+1−2∣+dln∣z+1+2∣+Crestcalculusofcoefgicients...becontinued..
Answered by MJS last updated on 23/Mar/20
∫x+1−1x−1+1dx=[t=x−1→dx=2x−1dt]=2∫tt2+2−tt+1dt==−2∫t2+2t+1dt+2∫t2+2dt+2∫dtt+1−2∫dt−2∫dt=−2t=−2x−1∙2∫dtt+1=2ln(t+1)=2ln(x−1+1)∙2∫t2+2dt=tt2+2+2ln(t+t2+2)==x−1x+1+2ln(x−1+x+1)∙−2∫t2+2t+1dt=Iprefert=2sinh(lnu)toavoidanotherstep[u=t+t2+22→dt=2(t2+2)t+t2+2du=u2+12u2du]=−2∫(u2+1)2u2(u2+2u−1)du==−2∫(u2+1)2u2(u+2+62)(u+2−62)du==23∫duu+2+62−23∫duu+2−62+2∫duu+2∫duu2−2∫du==23ln(u+2+62)−23ln(u+2−62)+2lnu−2u−2u==23ln2u+2+62u+2−6+2lnu−2(u2+1)u==23ln2(x−1+x+1)+2+62(x−1+x+1)+2−6+2ln(x−1+x+1)−2x+1∙⇒∫x+1−1x−1+1dx=thesumofthemarkedterms∙pleasecheckfortypos
Commented by M±th+et£s last updated on 23/Mar/20
godblessyouandthankyousirthereisnotypos
Terms of Service
Privacy Policy
Contact: info@tinkutara.com