Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 85641 by abdomathmax last updated on 23/Mar/20

calculate A_λ =∫_3 ^∞   (dx/((x+λ)^3 (x−2)^4 ))   (λ>0)

calculateAλ=3dx(x+λ)3(x2)4(λ>0)

Commented bymathmax by abdo last updated on 24/Mar/20

A_λ  =∫_3 ^(+∞)  (dx/((((x+λ)/(x−2)))^3  (x−2)^7 )) changement ((x+λ)/(x−2))=t give  x+λ =tx−2t ⇒(1−t)x=−2t−λ ⇒x=((−2t−λ)/(1−t)) =((2t+λ)/(t−1)) ⇒  (dx/dt) =((2(t−1)−(2t+λ))/((t−1)^2 )) =((2t−2−2t−λ)/((t−1)^2 )) =((−2−λ)/((t−1)^2 ))  x−2 =((2t+λ)/(t−1))−2 =((2t+λ−2t+2)/(t−1)) =((λ+2)/(t−1)) ⇒  A_λ =− ∫_(3+λ) ^1  (1/(t^3 (((λ+2)/(t−1)))^7 ))×((λ+2)/((t−1)^2 ))dt  =(1/((λ+2)^6 ))∫_1 ^(3+λ)     (dt/(t^3 (((λ+2)/(t−1)))^(−5) )) =(1/((λ+2)))∫_1 ^(3+λ)  (((t−1)^5 )/t^3 )dt ⇒  (λ+2)A_λ  =∫_1 ^(3+λ)  ((Σ_(k=0) ^5  C_5 ^k  t^k (−1)^(5−k) )/t^3 )dt  =−∫_1 ^(3+λ)  Σ_(k=0) ^5  (−1)^k  C_5 ^k  t^(k−3)  dt  =−Σ_(k=0) ^5  (−1)^k C_5 ^k   ∫_1 ^(3+λ)   t^(k−3)  dt  =−Σ_(k=0 and k≠2) ^5  (−1)^k  C_5 ^k    [(1/(k−2))t^(k−2) ]_1 ^(3+λ)  −C_5 ^2  ∫_1 ^(3+λ)  (dt/t)  =−Σ_(k=0) ^5  (((−1)^k  C_5 ^k )/(k−2)){ (3+λ)^(k−2) −1}−C_5 ^2 {ln∣3+λ∣} ⇒  A_λ =−(1/(λ+2))Σ_(k=0and k≠2) ^5    (((−1)^k  C_5 ^k )/(k−2)){(3+λ)^(k−2) −1}  −(1/(λ+2)) C_5 ^2 ln∣3+λ∣ .

Aλ=3+dx(x+λx2)3(x2)7changementx+λx2=tgive x+λ=tx2t(1t)x=2tλx=2tλ1t=2t+λt1 dxdt=2(t1)(2t+λ)(t1)2=2t22tλ(t1)2=2λ(t1)2 x2=2t+λt12=2t+λ2t+2t1=λ+2t1 Aλ=3+λ11t3(λ+2t1)7×λ+2(t1)2dt =1(λ+2)613+λdtt3(λ+2t1)5=1(λ+2)13+λ(t1)5t3dt (λ+2)Aλ=13+λk=05C5ktk(1)5kt3dt =13+λk=05(1)kC5ktk3dt =k=05(1)kC5k13+λtk3dt =k=0andk25(1)kC5k[1k2tk2]13+λC5213+λdtt =k=05(1)kC5kk2{(3+λ)k21}C52{ln3+λ} Aλ=1λ+2k=0andk25(1)kC5kk2{(3+λ)k21} 1λ+2C52ln3+λ.

Commented bymathmax by abdo last updated on 24/Mar/20

λ≠−2

λ2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com