Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 85649 by Hassen_Timol last updated on 23/Mar/20

Proove that :    ((√(2−(√3)))/2) = (((√6)−(√2))/4)

Proovethat:232=624

Commented by mr W last updated on 23/Mar/20

((√(2−(√3)))/2)=((√(8−4(√3)))/4)=((√(((√6))^2 −2×(√6)×(√2)+((√2))^2 ))/4)  =((√(((√6)−(√2))^2 ))/4)=(((√6)−(√2))/4)

232=8434=(6)22×6×2+(2)24=(62)24=624

Answered by MJS last updated on 23/Mar/20

2(√(2−(√3)))=(√6)−(√2)  square both sides  4(2−(√3))=((√6)−(√2))^2   8−4(√3)=6−2(√(12))+2  8−4(√3)=8−2(√(2^2 3))  8−4(√3)=8−4(√3)    or:  (√(2−(√3)))=a+b(√3)  squaring  2−(√3)=a^2 +3b^2 +2ab(√3)  ⇒ 2=a^2 +3b^2 ∧−1=2ab  ⇒ 2=a^2 +3b^2 ∧b=−(1/(2a))  ⇒ 2=a^2 +(3/(4a^2 )) ⇒ a^4 −2a^2 +(3/4)=0 ⇒  ⇒ a_(1, 2) =±((√2)/2)∨a_(3, 4) =±((√6)/2) ⇒ b_j =−a_j   ⇒ (√(2−(√3)))=a_j −a_j (√3)=±(((√6)/2)−((√2)/2))  but we know (√(2−(√3)))>0 ⇒  (√(2−(√3)))=((√6)/2)−((√2)/2)  and  ((√(2−(√3)))/2)=(((√6)−(√2))/4)

223=62squarebothsides4(23)=(62)2843=6212+2843=82223843=843or:23=a+b3squaring23=a2+3b2+2ab32=a2+3b21=2ab2=a2+3b2b=12a2=a2+34a2a42a2+34=0a1,2=±22a3,4=±62bj=aj23=ajaj3=±(6222)butweknow23>023=6222and232=624

Terms of Service

Privacy Policy

Contact: info@tinkutara.com