Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 85676 by john santu last updated on 24/Mar/20

∫ _0 ^∞  (dx/((x+(√(1+x^2 )))^2 ))  let x = tan t ⇒dx=sec^2 t dt  ∫_0 ^(π/2)  ((sec^2 t dt)/((tan t+sec t)^2 )) =   ∫_0 ^(π/2)  (dt/((sin t+1)^2 )) = ∫_0 ^(π/2)  (dt/((cos (1/2)t+sin (1/2)t)^4 ))  = ∫_0 ^(π/2)  (dt/(4cos^4  ((1/2)t−(π/4))))  = (1/4)∫_0 ^(π/2)  sec^4 ((1/2)t−(π/4)) dt  [ let (1/2)t−(π/4)= u]  = (1/4)∫_(−(π/4)) ^0  sec^4 u ×2du  =(1/2)∫ _(−(π/4)) ^0 (tan^2 u+1) d(tan u)  = (1/2) [(1/3)tan^3 u + tan u ]_(−(π/4)) ^0   = (1/2) [ 0−(−(1/3)−1)]= (2/3)

$$\int\underset{\mathrm{0}} {\overset{\infty} {\:}}\:\frac{{dx}}{\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)^{\mathrm{2}} } \\ $$$${let}\:{x}\:=\:\mathrm{tan}\:{t}\:\Rightarrow{dx}=\mathrm{sec}\:^{\mathrm{2}} {t}\:{dt} \\ $$$$\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\frac{\mathrm{sec}\:^{\mathrm{2}} {t}\:{dt}}{\left(\mathrm{tan}\:{t}+\mathrm{sec}\:{t}\right)^{\mathrm{2}} }\:=\: \\ $$$$\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\frac{{dt}}{\left(\mathrm{sin}\:{t}+\mathrm{1}\right)^{\mathrm{2}} }\:=\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\frac{{dt}}{\left(\mathrm{cos}\:\frac{\mathrm{1}}{\mathrm{2}}{t}+\mathrm{sin}\:\frac{\mathrm{1}}{\mathrm{2}}{t}\right)^{\mathrm{4}} } \\ $$$$=\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\frac{{dt}}{\mathrm{4cos}^{\mathrm{4}} \:\left(\frac{\mathrm{1}}{\mathrm{2}}{t}−\frac{\pi}{\mathrm{4}}\right)} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{4}}\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\mathrm{sec}\:^{\mathrm{4}} \left(\frac{\mathrm{1}}{\mathrm{2}}{t}−\frac{\pi}{\mathrm{4}}\right)\:{dt} \\ $$$$\left[\:{let}\:\frac{\mathrm{1}}{\mathrm{2}}{t}−\frac{\pi}{\mathrm{4}}=\:{u}\right] \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{4}}\underset{−\frac{\pi}{\mathrm{4}}} {\overset{\mathrm{0}} {\int}}\:\mathrm{sec}\:^{\mathrm{4}} {u}\:×\mathrm{2}{du} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\underset{−\frac{\pi}{\mathrm{4}}} {\overset{\mathrm{0}} {\:}}\left(\mathrm{tan}\:^{\mathrm{2}} {u}+\mathrm{1}\right)\:{d}\left(\mathrm{tan}\:{u}\right) \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}}\:\left[\frac{\mathrm{1}}{\mathrm{3}}\mathrm{tan}\:^{\mathrm{3}} {u}\:+\:\mathrm{tan}\:{u}\:\right]_{−\frac{\pi}{\mathrm{4}}} ^{\mathrm{0}} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}}\:\left[\:\mathrm{0}−\left(−\frac{\mathrm{1}}{\mathrm{3}}−\mathrm{1}\right)\right]=\:\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$ \\ $$

Commented by jagoll last updated on 24/Mar/20

i try by  Euler substitution  let (√(1+x^2 )) = x+t   1+x^2  = x^2 +2xt+t^2   2xt+t^2 =1 ⇒ x = ((1−t^2 )/(2t))  dx = ((−t^2 −1)/(2t^2 )) dt  ∫ (1/((((1−t^2 )/(2t))+((1+t^2 )/(2t)))^2 )) × (((−t^2 −1)/(2t^2 ))) dt  ∫ (t^2 /(2t^2 )) ×(−t^2 −1) dt = −(1/2)∫ (t^2 +1)dt  −(1/2) [(1/3)t^3 +t ] =−(1/6)t [t^2 +3 ]  −(1/6) ((√(1+x^2 )) −x ) (2x^2 +4−2x(√(1+x^2 )) )  lim_(x→∞)  −(1/6)((√(1+x^2 ))−x)(2x^2 +4−2x(√(1+x^2 ))) +(4/6)  = (2/3)

$$\mathrm{i}\:\mathrm{try}\:\mathrm{by}\:\:\mathrm{Euler}\:\mathrm{substitution} \\ $$$$\mathrm{let}\:\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:=\:\mathrm{x}+\mathrm{t}\: \\ $$$$\mathrm{1}+\mathrm{x}^{\mathrm{2}} \:=\:\mathrm{x}^{\mathrm{2}} +\mathrm{2xt}+\mathrm{t}^{\mathrm{2}} \\ $$$$\mathrm{2xt}+\mathrm{t}^{\mathrm{2}} =\mathrm{1}\:\Rightarrow\:\mathrm{x}\:=\:\frac{\mathrm{1}−\mathrm{t}^{\mathrm{2}} }{\mathrm{2t}} \\ $$$$\mathrm{dx}\:=\:\frac{−\mathrm{t}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2t}^{\mathrm{2}} }\:\mathrm{dt} \\ $$$$\int\:\frac{\mathrm{1}}{\left(\frac{\mathrm{1}−\mathrm{t}^{\mathrm{2}} }{\mathrm{2t}}+\frac{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }{\mathrm{2t}}\right)^{\mathrm{2}} }\:×\:\left(\frac{−\mathrm{t}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2t}^{\mathrm{2}} }\right)\:\mathrm{dt} \\ $$$$\int\:\frac{\mathrm{t}^{\mathrm{2}} }{\mathrm{2t}^{\mathrm{2}} }\:×\left(−\mathrm{t}^{\mathrm{2}} −\mathrm{1}\right)\:\mathrm{dt}\:=\:−\frac{\mathrm{1}}{\mathrm{2}}\int\:\left(\mathrm{t}^{\mathrm{2}} +\mathrm{1}\right)\mathrm{dt} \\ $$$$−\frac{\mathrm{1}}{\mathrm{2}}\:\left[\frac{\mathrm{1}}{\mathrm{3}}\mathrm{t}^{\mathrm{3}} +\mathrm{t}\:\right]\:=−\frac{\mathrm{1}}{\mathrm{6}}\mathrm{t}\:\left[\mathrm{t}^{\mathrm{2}} +\mathrm{3}\:\right] \\ $$$$−\frac{\mathrm{1}}{\mathrm{6}}\:\left(\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:−\mathrm{x}\:\right)\:\left(\mathrm{2x}^{\mathrm{2}} +\mathrm{4}−\mathrm{2x}\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:\right) \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:−\frac{\mathrm{1}}{\mathrm{6}}\left(\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }−\mathrm{x}\right)\left(\mathrm{2x}^{\mathrm{2}} +\mathrm{4}−\mathrm{2x}\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\right)\:+\frac{\mathrm{4}}{\mathrm{6}} \\ $$$$=\:\frac{\mathrm{2}}{\mathrm{3}} \\ $$

Commented by john santu last updated on 24/Mar/20

good

$${good} \\ $$

Commented by sakeefhasan05@gmail.com last updated on 24/Mar/20

∫_0 ^∞ (1/((x+(√(1+x^2 )))^n ))dx=(n/(n^2 −1))  common solution

$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\left(\mathrm{x}+\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\right)^{\mathrm{n}} }\mathrm{dx}=\frac{\mathrm{n}}{\mathrm{n}^{\mathrm{2}} −\mathrm{1}} \\ $$$$\mathrm{common}\:\mathrm{solution} \\ $$

Commented by sakeefhasan05@gmail.com last updated on 24/Mar/20

comment pls

$$\mathrm{comment}\:\mathrm{pls} \\ $$

Commented by john santu last updated on 24/Mar/20

waw... it generally solution sir?

$${waw}...\:{it}\:{generally}\:{solution}\:{sir}? \\ $$

Commented by sakeefhasan05@gmail.com last updated on 24/Mar/20

yeah .n=3 check ((3/8)) pls try

$$\mathrm{yeah}\:.\mathrm{n}=\mathrm{3}\:\mathrm{check}\:\left(\frac{\mathrm{3}}{\mathrm{8}}\right)\:\mathrm{pls}\:\mathrm{try} \\ $$

Commented by jagoll last updated on 24/Mar/20

but n ≠ 1?

$$\mathrm{but}\:\mathrm{n}\:\neq\:\mathrm{1}? \\ $$

Commented by sakeefhasan05@gmail.com last updated on 24/Mar/20

sry (n/((n^2 −1)))  ,[n^2 −1≠0] so  (n≠1) & (n≠−1)

$$\mathrm{sry}\:\frac{\mathrm{n}}{\left(\mathrm{n}^{\mathrm{2}} −\mathrm{1}\right)}\:\:,\left[\mathrm{n}^{\mathrm{2}} −\mathrm{1}\neq\mathrm{0}\right]\:\mathrm{so}\:\:\left(\mathrm{n}\neq\mathrm{1}\right)\:\&\:\left(\mathrm{n}\neq−\mathrm{1}\right) \\ $$

Commented by sakeefhasan05@gmail.com last updated on 24/Mar/20

thank you  for direct me

$$\mathrm{thank}\:\mathrm{you}\:\:\mathrm{for}\:\mathrm{direct}\:\mathrm{me} \\ $$

Commented by mathmax by abdo last updated on 24/Mar/20

let A_n =∫_0 ^∞   (dx/((x+(√(1+x^2 )))^n ))  we do the changement x=sh(t) ⇒  A_n =∫_0 ^∞   ((ch(t))/((sh(t)+ch(t))^n ))dt =∫_0 ^∞   ((ch(t))/((((e^t −e^(−t) )/2)+((e^t  +e^(−t) )/2))^n ))dt    =∫_0 ^∞  e^(−nt) (((e^t  +e^(−t) )/2))dt =(1/2) ∫_0 ^∞  ( e^((−n+1)t)  +e^(−(n+1)t) )dt  =(1/2)[(1/(1−n))e^((1−n)t)  −(1/(n+1))e^(−(n+1)t) ]_0 ^(+∞)   =(1/2){−(1/(1−n))+(1/(n+1))} =(1/2)((1/(n+1))+(1/(n−1))) =(1/2)(((2n)/(n^2 −1))) ⇒  A_n =(n/(n^2 −1))   (n>1)  so  ∫_0 ^∞    (dx/((x+(√(1+x^2 )))^2 )) =(2/(2^2 −1)) =(2/3)

$${let}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)^{{n}} }\:\:{we}\:{do}\:{the}\:{changement}\:{x}={sh}\left({t}\right)\:\Rightarrow \\ $$$${A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ch}\left({t}\right)}{\left({sh}\left({t}\right)+{ch}\left({t}\right)\right)^{{n}} }{dt}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ch}\left({t}\right)}{\left(\frac{{e}^{{t}} −{e}^{−{t}} }{\mathrm{2}}+\frac{{e}^{{t}} \:+{e}^{−{t}} }{\mathrm{2}}\right)^{{n}} }{dt}\:\: \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:{e}^{−{nt}} \left(\frac{{e}^{{t}} \:+{e}^{−{t}} }{\mathrm{2}}\right){dt}\:=\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\infty} \:\left(\:{e}^{\left(−{n}+\mathrm{1}\right){t}} \:+{e}^{−\left({n}+\mathrm{1}\right){t}} \right){dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{\mathrm{1}}{\mathrm{1}−{n}}{e}^{\left(\mathrm{1}−{n}\right){t}} \:−\frac{\mathrm{1}}{{n}+\mathrm{1}}{e}^{−\left({n}+\mathrm{1}\right){t}} \right]_{\mathrm{0}} ^{+\infty} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left\{−\frac{\mathrm{1}}{\mathrm{1}−{n}}+\frac{\mathrm{1}}{{n}+\mathrm{1}}\right\}\:=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{{n}+\mathrm{1}}+\frac{\mathrm{1}}{{n}−\mathrm{1}}\right)\:=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{2}{n}}{{n}^{\mathrm{2}} −\mathrm{1}}\right)\:\Rightarrow \\ $$$${A}_{{n}} =\frac{{n}}{{n}^{\mathrm{2}} −\mathrm{1}}\:\:\:\left({n}>\mathrm{1}\right)\:\:{so} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)^{\mathrm{2}} }\:=\frac{\mathrm{2}}{\mathrm{2}^{\mathrm{2}} −\mathrm{1}}\:=\frac{\mathrm{2}}{\mathrm{3}} \\ $$

Commented by john santu last updated on 24/Mar/20

thank you sir for your short cut

$${thank}\:{you}\:{sir}\:{for}\:{your}\:{short}\:{cut} \\ $$

Commented by john santu last updated on 24/Mar/20

indonesian sir

$${indonesian}\:{sir} \\ $$

Commented by mathmax by abdo last updated on 24/Mar/20

where are you from sir john...

$${where}\:{are}\:{you}\:{from}\:{sir}\:{john}... \\ $$

Commented by mathmax by abdo last updated on 24/Mar/20

aah good  sir ...

$${aah}\:{good}\:\:{sir}\:... \\ $$

Commented by john santu last updated on 25/Mar/20

why sir? if you where you   come sir?

$${why}\:{sir}?\:{if}\:{you}\:{where}\:{you}\: \\ $$$${come}\:{sir}? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com