Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 85781 by Joel578 last updated on 24/Mar/20

∫_0 ^1  (ln (1/x))^(−3/2)  dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\mathrm{ln}\:\frac{\mathrm{1}}{{x}}\right)^{−\mathrm{3}/\mathrm{2}} \:{dx} \\ $$

Commented by Joel578 last updated on 24/Mar/20

If we use u = ln (1/x), the integral will become  ∫_0 ^∞ u^(−3/2)  e^(−u)  du   which is Γ(−(1/2)) = −2(√π)  But we know for 0<x<1, the graph of   y = (ln (1/x))^(−3/2)   is always above x−axis, so  the integral can′t be negative.  Is my method invalid?

$$\mathrm{If}\:\mathrm{we}\:\mathrm{use}\:{u}\:=\:\mathrm{ln}\:\frac{\mathrm{1}}{{x}},\:\mathrm{the}\:\mathrm{integral}\:\mathrm{will}\:\mathrm{become} \\ $$$$\int_{\mathrm{0}} ^{\infty} {u}^{−\mathrm{3}/\mathrm{2}} \:{e}^{−{u}} \:{du}\:\:\:\mathrm{which}\:\mathrm{is}\:\Gamma\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)\:=\:−\mathrm{2}\sqrt{\pi} \\ $$$$\mathrm{But}\:\mathrm{we}\:\mathrm{know}\:\mathrm{for}\:\mathrm{0}<{x}<\mathrm{1},\:\mathrm{the}\:\mathrm{graph}\:\mathrm{of}\: \\ $$$${y}\:=\:\left(\mathrm{ln}\:\frac{\mathrm{1}}{{x}}\right)^{−\mathrm{3}/\mathrm{2}} \:\:\mathrm{is}\:\mathrm{always}\:\mathrm{above}\:{x}−\mathrm{axis},\:\mathrm{so} \\ $$$$\mathrm{the}\:\mathrm{integral}\:\mathrm{can}'\mathrm{t}\:\mathrm{be}\:\mathrm{negative}. \\ $$$$\mathrm{I}{s}\:\mathrm{my}\:\mathrm{method}\:\mathrm{invalid}? \\ $$

Commented by MJS last updated on 24/Mar/20

I′m not sure, but the integral Γ(x) only  converges for x>0. for x<0∧x∉Z we must  calculate backwards: Γ(−(1/2))=((Γ((1/2)))/(−(1/2)))=−2(√π)  so the problem might be, if you want to  integrate (ln (1/x))^(−(3/2))  you cannot use the  gamma function

$$\mathrm{I}'\mathrm{m}\:\mathrm{not}\:\mathrm{sure},\:\mathrm{but}\:\mathrm{the}\:\mathrm{integral}\:\Gamma\left({x}\right)\:\mathrm{only} \\ $$$$\mathrm{converges}\:\mathrm{for}\:{x}>\mathrm{0}.\:\mathrm{for}\:{x}<\mathrm{0}\wedge{x}\notin\mathbb{Z}\:\mathrm{we}\:\mathrm{must} \\ $$$$\mathrm{calculate}\:\mathrm{backwards}:\:\Gamma\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)=\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{−\frac{\mathrm{1}}{\mathrm{2}}}=−\mathrm{2}\sqrt{\pi} \\ $$$$\mathrm{so}\:\mathrm{the}\:\mathrm{problem}\:\mathrm{might}\:\mathrm{be},\:\mathrm{if}\:\mathrm{you}\:\mathrm{want}\:\mathrm{to} \\ $$$$\mathrm{integrate}\:\left(\mathrm{ln}\:\frac{\mathrm{1}}{{x}}\right)^{−\frac{\mathrm{3}}{\mathrm{2}}} \:\mathrm{you}\:\mathrm{cannot}\:\mathrm{use}\:\mathrm{the} \\ $$$$\mathrm{gamma}\:\mathrm{function} \\ $$

Answered by MJS last updated on 24/Mar/20

∫(ln (1/x))^(−3/2) dx=       [t=ln (1/x) → dx=−xdt]  =−∫e^(−t) t^(−3/2) dt=       [by parts: f ′=t^(−3/2)  → f=−2t^(−1/2)          g=e^(−t)  →g′=−e^(−t) ]  =2e^(−t) t^(−1/2) +2∫e^(−t) t^(−1/2) dt=         [2∫e^(−t) t^(−1/2) dt=            [u=(√t) → dt=2(√t)du]       =4∫e^(−u^2 ) du=2(√π)∫((2e^(−u^2 ) )/(√π))du=2(√π)erf (u) =       =2(√π)erf ((√t))]    =2e^(−t) t^(−1/2) +2(√π)erf ((√t)) =  =((2x)/(√(ln (1/x))))+2(√π)erf ((√(ln (1/x)))) +C  but this integral does not converge for  0≤x≤1...

$$\int\left(\mathrm{ln}\:\frac{\mathrm{1}}{{x}}\right)^{−\mathrm{3}/\mathrm{2}} {dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{ln}\:\frac{\mathrm{1}}{{x}}\:\rightarrow\:{dx}=−{xdt}\right] \\ $$$$=−\int\mathrm{e}^{−{t}} {t}^{−\mathrm{3}/\mathrm{2}} {dt}= \\ $$$$\:\:\:\:\:\left[\mathrm{by}\:\mathrm{parts}:\:{f}\:'={t}^{−\mathrm{3}/\mathrm{2}} \:\rightarrow\:{f}=−\mathrm{2}{t}^{−\mathrm{1}/\mathrm{2}} \right. \\ $$$$\left.\:\:\:\:\:\:\:{g}=\mathrm{e}^{−{t}} \:\rightarrow{g}'=−\mathrm{e}^{−{t}} \right] \\ $$$$=\mathrm{2e}^{−{t}} {t}^{−\mathrm{1}/\mathrm{2}} +\mathrm{2}\int\mathrm{e}^{−{t}} {t}^{−\mathrm{1}/\mathrm{2}} {dt}= \\ $$$$ \\ $$$$\:\:\:\:\:\left[\mathrm{2}\int\mathrm{e}^{−{t}} {t}^{−\mathrm{1}/\mathrm{2}} {dt}=\right. \\ $$$$\:\:\:\:\:\:\:\:\:\:\left[{u}=\sqrt{{t}}\:\rightarrow\:{dt}=\mathrm{2}\sqrt{{t}}{du}\right] \\ $$$$\:\:\:\:\:=\mathrm{4}\int\mathrm{e}^{−{u}^{\mathrm{2}} } {du}=\mathrm{2}\sqrt{\pi}\int\frac{\mathrm{2e}^{−{u}^{\mathrm{2}} } }{\sqrt{\pi}}{du}=\mathrm{2}\sqrt{\pi}\mathrm{erf}\:\left({u}\right)\:= \\ $$$$\left.\:\:\:\:\:=\mathrm{2}\sqrt{\pi}\mathrm{erf}\:\left(\sqrt{{t}}\right)\right] \\ $$$$ \\ $$$$=\mathrm{2e}^{−{t}} {t}^{−\mathrm{1}/\mathrm{2}} +\mathrm{2}\sqrt{\pi}\mathrm{erf}\:\left(\sqrt{{t}}\right)\:= \\ $$$$=\frac{\mathrm{2}{x}}{\sqrt{\mathrm{ln}\:\frac{\mathrm{1}}{{x}}}}+\mathrm{2}\sqrt{\pi}\mathrm{erf}\:\left(\sqrt{\mathrm{ln}\:\frac{\mathrm{1}}{{x}}}\right)\:+{C} \\ $$$$\mathrm{but}\:\mathrm{this}\:\mathrm{integral}\:\mathrm{does}\:\mathrm{not}\:\mathrm{converge}\:\mathrm{for} \\ $$$$\mathrm{0}\leqslant{x}\leqslant\mathrm{1}... \\ $$

Commented by Joel578 last updated on 25/Mar/20

thank you very much

$${thank}\:{you}\:{very}\:{much} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com