Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 85801 by mathmax by abdo last updated on 24/Mar/20

calculate ∫_0 ^π   (dx/((cosx +2sinx)^2 ))

calculate0πdx(cosx+2sinx)2

Commented by john santu last updated on 25/Mar/20

(cos x+2sin x)^2  = 5 cos^2 (x−tan^(−1) (2))  ∫ (dx/(5 cos^2 (x−tan^(−1) (2)))) =  (1/5) tan (x−tan^(−1) (2)) =   (1/5)(((tan x−2)/(1+2tan x))) +c  so ⇒ ∫_0 ^π  (dx/((cos x+2sin x)^2 )) =   (1/5) [ ((tan x−2)/(1+2tan x)) ]_( 0) ^(  π)  =   (1/5) [ −2 −(−2) ] = 0

(cosx+2sinx)2=5cos2(xtan1(2))dx5cos2(xtan1(2))=15tan(xtan1(2))=15(tanx21+2tanx)+csoπ0dx(cosx+2sinx)2=Missing \left or extra \right15[2(2)]=0

Commented by mathmax by abdo last updated on 26/Mar/20

et A =∫_0 ^π   (dx/((cosx+2sinx)^2 ))  changement tan((x/2))=t give  A =∫_0 ^∞     ((2dt)/((1+t^2 ){((1−t^2 )/(1+t^2 ))+((4t)/(1+t^2 ))}^2 )) =∫_0 ^∞    ((2(1+t^2 ))/((−t^2 +4t+1)^2 ))dt  =2∫_0 ^∞    ((t^2 +1)/((t^2 −4t−1)^2 ))dt  let decompose F(t)=((t^2  +1)/((t^2 −4t−1)^2 ))  t^2 −4t−1 =0→Δ^′ =4+1 =5 ⇒t_1 =2+(√5) and t_2 =2−(√5)  F(t) =((t^2  +1)/((t−t_1 )^2 (t−t_2 )^2 )) =(a/(t−t_1 )) +(b/((t−t_1 )^2 )) +(c/(t−t_2 )) +(d/((t−t_2 )^2 ))  b =((t_1 ^2 +1)/((t_1 −t_2 )^2 )) =((4+4(√5)+5+1)/((2(√5))^2 )) =((10+4(√5))/(20)) =((5+2(√5))/(10))  d =((t_2 ^2  +1)/((t_2 −t_1 )^2 )) =((4−4(√5)+5+1)/(20)) =((10−4(√5))/(20)) =((5−2(√5))/(10))  lim_(t→+∞) tF(t) =0 =a+c ⇒c=−a  F(0)=(1/((t_1 t_2 )^2 )) =1 =−(a/t_1 ) +(b/t_1 ^2 ) +(a/t_2 ) +(d/t_2 ^2 ) ⇒  ((1/t_2 )−(1/t_1 ))a =1−(b/t_1 ^2 )−(d/t_2 ^2 ) ⇒(((2(√5))/(−1)))a =1−(b/(4+4(√5)+5))−(d/(4−4(√5)+5))  =1−(b/(9+4(√5)))−(d/(9−4(√5))) ⇒a =−(1/(2(√5))){1−(b/(9+4(√5)))−(d/(9−4(√5)))} ⇒  A =2a∫_0 ^∞ (dt/(t−t_1 )) +2b∫_0 ^∞  (dt/((t−t_1 )^2 )) +2c ∫_0 ^∞ (dt/(t−t_2 )) +2d∫_0 ^∞  (dt/((t−t_2 )^2 ))  =[2aln∣t−t_1 ∣+2cln∣t−t_2 ∣]_0 ^(+∞)  +[((−2b)/(t−t_1 ))−((2d)/(t−t_2 ))]_0 ^(+∞)   rest to finish the calculus....

etA=0πdx(cosx+2sinx)2changementtan(x2)=tgiveA=02dt(1+t2){1t21+t2+4t1+t2}2=02(1+t2)(t2+4t+1)2dt=20t2+1(t24t1)2dtletdecomposeF(t)=t2+1(t24t1)2t24t1=0Δ=4+1=5t1=2+5andt2=25F(t)=t2+1(tt1)2(tt2)2=att1+b(tt1)2+ctt2+d(tt2)2b=t12+1(t1t2)2=4+45+5+1(25)2=10+4520=5+2510d=t22+1(t2t1)2=445+5+120=104520=52510limt+tF(t)=0=a+cc=aF(0)=1(t1t2)2=1=at1+bt12+at2+dt22(1t21t1)a=1bt12dt22(251)a=1b4+45+5d445+5=1b9+45d945a=125{1b9+45d945}A=2a0dttt1+2b0dt(tt1)2+2c0dttt2+2d0dt(tt2)2=[2alntt1+2clntt2]0++[2btt12dtt2]0+resttofinishthecalculus....

Commented by mathmax by abdo last updated on 26/Mar/20

let try another way we have  A =2 ∫_0 ^∞  ((t^2  +1)/((t−t_1 )^2 (t−t_2 )^2 ))  with t_1 =2+(√5) and t_2 =2−(√5)  A =2∫_0 ^∞    ((t^2  +1)/((((t−t_1 )/(t−t_2 )))^2 (t−t_2 )^4 ))dt  we do the changement ((t−t_1 )/(t−t_2 )) =u⇒  t−t_1 =ut−ut_2  ⇒(1−u)t =t_1 −ut_2  ⇒t =((t_1 −ut_2 )/(1−u)) ⇒  dt =((−t_2 (1−u)+(t_1 −ut_2 ))/((1−u)^2 )) =((−t_2 +t_2 u+t_1 −ut_2 )/((1−u)^2 )) =((2(√5))/((1−u)^2 ))  t−t_2 =((t_1 −ut_2 )/(1−u))−t_2 =((t_1 −ut_2 −t_2 +ut_2 )/(1−u)) =((2(√5))/(1−u)) ⇒  A =2 ∫_(t_1 /t_2 ) ^1     (((((t_1 −ut_2 )/(1−u)))^2  +1)/(u^2 ×(((2(√5))^4 )/((1−u)^4 ))))×((2(√5))/((1−u)^2 ))du  A =(2/((2(√5))^3 )) ∫_(t_1 /t_2 ) ^1   (((t_1 −ut_2 )^2  +(1−u)^2 )/u^2 ) du  A =(1/(20(√5))) ∫_(t_1 /t_2 ) ^1   ((t_2 ^2 u^2 +2u +t_1 ^2   +u^2 −2u +1)/u^2 )du   (t_1 t_2 =−1)  20(√5) A =∫_(t_1 /t_2 ) ^1   (((1+t_2 ^2 )u^2  +t_1 ^2 )/u^2 )du  =(1+t_2 ^2 )(1−(t_1 /t_2 )) −t_1 ^2 [(1/u)]_(t_1 /t_2 ) ^1   =(1+t_2 ^2 )((t_2 −t_1 )/t_2 ) −t_1 ^2 (1−(t_2 /t_1 )) ⇒  A=(1/(20(√5))){(1+(2−(√5))^2 )(((−2(√5))/(2−(√5))))−(2+(√5))^2 (((2(√5))/(2+(√5))))}

lettryanotherwaywehaveA=20t2+1(tt1)2(tt2)2witht1=2+5andt2=25A=20t2+1(tt1tt2)2(tt2)4dtwedothechangementtt1tt2=utt1=utut2(1u)t=t1ut2t=t1ut21udt=t2(1u)+(t1ut2)(1u)2=t2+t2u+t1ut2(1u)2=25(1u)2tt2=t1ut21ut2=t1ut2t2+ut21u=251uA=2t1t21(t1ut21u)2+1u2×(25)4(1u)4×25(1u)2duA=2(25)3t1t21(t1ut2)2+(1u)2u2duA=1205t1t21t22u2+2u+t12+u22u+1u2du(t1t2=1)205A=t1t21(1+t22)u2+t12u2du=(1+t22)(1t1t2)t12[1u]t1t21=(1+t22)t2t1t2t12(1t2t1)A=1205{(1+(25)2)(2525)(2+5)2(252+5)}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com