Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 85865 by subhankar10 last updated on 25/Mar/20

prove that   curl(r^n c^→ ×r^→ )=(n+2)r^n c^→ −nr^(n−2) (r^→ .c^→ )  .  where c is the constant vector.

provethatcurl(rnc×r)=(n+2)rncnrn2(r.c).wherecistheconstantvector.

Answered by TANMAY PANACEA. last updated on 25/Mar/20

r^→ =ix+jy+kz→r^2 =x^2 +y^2 +z^2   r^n =(x^2 +y^2 +z^2 )^(n/2)   c^→ =ia+ib+kd  curlA^→ =▽^→ ×A^→   (i(∂/∂x)+j(∂/∂y)+k(∂/∂z))×A^→   now  ▽^→ ×(c^→ ×r^n r^→ )  =(▽^→ .r^n r^→ )c^→ −(▽^→ .c^→ )r^n r^→   =c^→ (i(∂/∂x)+j(∂/∂y)+k(∂/∂z)).(x^2 +y^2 +z^2 )^(n/2) (ix+jy+kz)  =c^→ [(∂/∂x){x.(x^2 +y^2 +z^2 )^(n/2) }+(∂/∂y){y(x^2 +y^2 +z^2 )}+(∂/∂z){z(x^2 +y^2 +z^2 )}]  calculation of  (∂/∂x){x(x^2 +y^2 +z^2 )^(n/2) }  =(x^2 +y^2 +z^2 )^(n/2) ×1+x×(n/2)(x^2 +y^2 +z^2 )^((n/2)−1) ×2x  =r^n +x^2 ×n(r^2 )^((n/2)−1)   =r^n +x^2 ×n×r^(n−2)   adding three  3r^n +nr^(n−2) (x^2 +y^2 +z^2 )  =3r^n +nr^n =r^n (n+3)  so answer is      r^n (n+3)c^→   timorrow i shall solve in paper                                                .=..  c^→ ×r^→   ∣i        j       k    ∣  ∣a        b       d    ∣  ∣x        y       z    ∣  =i(bz−yd)−j(az−xd)+k(ay−bx)  now  ∣i                                                        j

r=ix+jy+kzr2=x2+y2+z2rn=(x2+y2+z2)n2c=ia+ib+kdcurlA=×A(ix+jy+kz)×Anow×(c×rnr)=(.rnr)c(.c)rnr=c(ix+jy+kz).(x2+y2+z2)n2(ix+jy+kz)=c[x{x.(x2+y2+z2)n2}+y{y(x2+y2+z2)}+z{z(x2+y2+z2)}]calculationofx{x(x2+y2+z2)n2}=(x2+y2+z2)n2×1+x×n2(x2+y2+z2)n21×2x=rn+x2×n(r2)n21=rn+x2×n×rn2addingthree3rn+nrn2(x2+y2+z2)=3rn+nrn=rn(n+3)soanswerisrn(n+3)ctimorrowishallsolveinpaper.=..c×rijkabdxyz=i(bzyd)j(azxd)+k(aybx)nowij

Terms of Service

Privacy Policy

Contact: info@tinkutara.com