Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 85902 by mr W last updated on 26/Mar/20

find the coefficients of x^2  and x^3    terms in the expansion of  (1+x)(1+2x)^2 (1+3x)^3 ...(1+100x)^(100)

findthecoefficientsofx2andx3termsintheexpansionof(1+x)(1+2x)2(1+3x)3...(1+100x)100

Commented by Serlea last updated on 26/Mar/20

Ok  From my  analysis, it′s 21868 and 1400  How?  Starting (1+x)= Doesn^′ t exist  (1+x)(1+2x)^2 =4 and 8  (1+x)(1+2x)^2 (1+3x)^3 =238 and 80  { 238x^3 +80x^2 +14x+1}  (1+x)(1+2x)^2 (1+3x)^3 (1+4x)^4 =3118 and 400  {3118x^3 +400x^2 +30x+1}   It′s impossible to calculate to the end Buy  let try the next two  (1+x)(1+2x)^2 (1+3x)^3 (1+4x)^4 (1+5x)^5 =21868 and 1400  {21868x^3 +1400x^2 +55x+1}  (1+x)(1+2x)^2 (1+3x)^3 (1+4x)^4 (1+5x)^5 (1+6x)^6   ⇒ 21868(1+6x)^6 x^3 +1400(1+6x)^6 x^2 +55(1+6x)^6 +(1+6x)^6                  ⇊_(21868x^3 )                               ⇊_(1400x^2 )     With this, The coeff. remains constant for  21868 and 1400

OkFrommyanalysis,its21868and1400How?Starting(1+x)=Doesntexist(1+x)(1+2x)2=4and8(1+x)(1+2x)2(1+3x)3=238and80{238x3+80x2+14x+1}(1+x)(1+2x)2(1+3x)3(1+4x)4=3118and400{3118x3+400x2+30x+1}ItsimpossibletocalculatetotheendBuylettrythenexttwo(1+x)(1+2x)2(1+3x)3(1+4x)4(1+5x)5=21868and1400{21868x3+1400x2+55x+1}(1+x)(1+2x)2(1+3x)3(1+4x)4(1+5x)5(1+6x)621868(1+6x)6x3+1400(1+6x)6x2+55(1+6x)6+(1+6x)621868x31400x2Withthis,Thecoeff.remainsconstantfor21868and1400

Commented by mr W last updated on 26/Mar/20

i don′t think you are right sir.  even when we only have (1+100x)^(100)   x^2  term is C_2 ^(100) (100x)^2 =((99×100^3 )/2)x^2   x^3   term is C_3 ^(100) (100x)^3 =((98×99×100^4 )/6)x^3

idontthinkyouarerightsir.evenwhenweonlyhave(1+100x)100x2termisC2100(100x)2=99×10032x2x3termisC3100(100x)3=98×99×10046x3

Commented by Serlea last updated on 26/Mar/20

Ok sir Thanks for comment but Watch  The c_(2,3) ^(100)  is going to be multiply by another X^n (n=certain number≠0,1) to increase the power  ((98×99×100^4 )/6)X^(3+n)   Hope that You review the solution again

OksirThanksforcommentbutWatchThec2,3100isgoingtobemultiplybyanotherXn(n=certainnumber0,1)toincreasethepower98×99×10046X3+nHopethatYoureviewthesolutionagain

Commented by mr W last updated on 26/Mar/20

certainly i know that.  i just wanted to show that your answer  is wrong. i didn′t say that is the final  answer what i gave. i just  showed the x^2  and x^3  in  (1+100x)^(100) , the coef. are already  very huge. i said “even when we only...”  the answer to the question is much  more complicated. i′ll try later.

certainlyiknowthat.ijustwantedtoshowthatyouransweriswrong.ididntsaythatisthefinalanswerwhatigave.ijustshowedthex2andx3in(1+100x)100,thecoef.arealreadyveryhuge.isaidevenwhenweonly...theanswertothequestionismuchmorecomplicated.illtrylater.

Commented by Serlea last updated on 26/Mar/20

  To Look from the Open door,  The coeff. Of X^2  and X^3  Will remain  constant because for every Bracket,  There will be a number ′′1′′ that doesn′t have a coeff.  let a=coeff of x^3   for ax^3 (1+100x)^(100) ⇒1+.....   So:  ax^3 (1+12x+..)  =ax^3 +.....  That is to show that the coeff of X^3    will remain constant

ToLookfromtheOpendoor,Thecoeff.OfX2andX3WillremainconstantbecauseforeveryBracket,Therewillbeanumber1thatdoesnthaveacoeff.leta=coeffofx3forax3(1+100x)1001+.....So:ax3(1+12x+..)=ax3+.....ThatistoshowthatthecoeffofX3willremainconstant

Commented by mr W last updated on 26/Mar/20

but every x term and every x^2  can also  form a new x^3  term.

buteveryxtermandeveryx2canalsoformanewx3term.

Commented by Kunal12588 last updated on 26/Mar/20

and the answers are  x^2 → 57227610000  x^3 →6451445040986110  I don′t know how to solve, but these are the  answer.

andtheanswersarex257227610000x36451445040986110Idontknowhowtosolve,butthesearetheanswer.

Commented by jagoll last updated on 26/Mar/20

sir 57227610000 = C_2 ^(100) ??

sir57227610000=C2100??

Commented by naka3546 last updated on 26/Mar/20

C _2 ^(100)   =  4950

C1002=4950

Commented by jagoll last updated on 26/Mar/20

correction   C_2 ^(100) ×(100)^2

correctionC2100×(100)2

Commented by naka3546 last updated on 26/Mar/20

Commented by Serlea last updated on 26/Mar/20

How is that possible when it is not  (1+x)^(100)

Howisthatpossiblewhenitisnot(1+x)100

Commented by TawaTawa1 last updated on 26/Mar/20

Sir mrW. being a while sir.  Please kindly help with question  85950.  Please. Thanks for every time sir. I need it.  God bless you sir.

SirmrW.beingawhilesir.Pleasekindlyhelpwithquestion85950.Please.Thanksforeverytimesir.Ineedit.Godblessyousir.

Commented by Prithwish Sen 1 last updated on 26/Mar/20

Let  (1+x)(1+2x)^2 (1+3x)^3 (1+4x)^4   and for (1+x), A^x and A^x^2  denotes the coeffi. of   x and x^2  repectively  similarly B , C, D for other 3 factors  then for the coefficient of x^2  for the expression  will be  A^x .B^x +A^x .C^x +A^x .D^x +B^x .C^x +B^x .D^x +C^x .D^x +  A^x^2  +B^x^2  +C^x^2    similarly for the coefficient of x^3   A^x .B^x^2  +A^x .C^x^2  +A^x .D^x^2  +B^x .C^x^2  +B^x .D^x^2  +C^x .D^x^2    +B^x^2  .C^x +B^x^2  .D^x +C^x^2  .D^x +C^x^3  +D^x^3  +A^x .B^x .C^x +A^x .B^x .D^x   +A^x .C^x .D^x +B^x .C^x .D^x   waiting for your response sir.

Let(1+x)(1+2x)2(1+3x)3(1+4x)4andfor(1+x),AxandAx2denotesthecoeffi.ofxandx2repectivelysimilarlyB,C,Dforother3factorsthenforthecoefficientofx2fortheexpressionwillbeAx.Bx+Ax.Cx+Ax.Dx+Bx.Cx+Bx.Dx+Cx.Dx+Ax2+Bx2+Cx2similarlyforthecoefficientofx3Ax.Bx2+Ax.Cx2+Ax.Dx2+Bx.Cx2+Bx.Dx2+Cx.Dx2+Bx2.Cx+Bx2.Dx+Cx2.Dx+Cx3+Dx3+Ax.Bx.Cx+Ax.Bx.Dx+Ax.Cx.Dx+Bx.Cx.Dxwaitingforyourresponsesir.

Commented by Serlea last updated on 26/Mar/20

Can u explain again  I am not getting ur point

CanuexplainagainIamnotgettingurpoint

Answered by mr W last updated on 06/Apr/20

let n=100  P=(1+x)(1+2x)^2 (1+3x)^3 ...(1+100x)^(100)   =P_1 P_2 P_3 ...P_k ...P_n   P_k =(1+kx)^k =Σ_(r=0) ^k C_r ^k (kx)^r   P_k =1+k(kx)+((k(k−1))/(2!))(kx)^2 +((k(k−1)(k−2))/(3!))(kx)^3 +((k(k−1)(k−2)(k−3))/(4!))(kx)^4 +o(x^4 )  =1+k^2 x+((k^3 (k−1))/2)x^2 +((k^4 (k−1)(k−2))/6)x^3 +((k^5 (k−1)(k−2)(k−3))/(24))x^4 +o(x^4 )  ⇒P_k =1+a_(k,1) x+a_(k,2) x^2 +a_(k,3) x^3 +a_(k,4) x^4 +o(x^4 )  with   a_(k^� ,1) =k^2 , a_(k,2) =((k^3 (k−1))/2), a_(k,3) =((k^4 (k−1)(k−2))/6), a_(k,4) =((k^5 (k−1)(k−2)(k−3))/(24))  k=1,2,3,...,n    coef. of x term:  C_1 =Σ_(k=1) ^n a_(k,1) =Σ_(k=1) ^n k^2 =((n(n+1)(2n+1))/6)  with n=100,  C_1 =((100×101×201)/6)=338 350    coef. of x^2  term:  C_2 =Σ_(k=1) ^n Σ_(j=k+1) ^n a_(k,1) a_(j,1) +Σ_(k=1) ^n a_(k,2)   =(1/2)Σ_(k=1) ^n a_(k,1) (Σ_(j=1) ^n a_(j,1) −a_(k,1) )+Σ_(k=1) ^n a_(k,2)   =(1/2)[(Σ_(k=1) ^n a_(k,1) )^2 −Σ_(k=1) ^n a_(k,1) ^2 ]+Σ_(k=1) ^n a_(k^� 2)   =(1/2)[(Σ_(k=1) ^n k^2 )^2 −Σ_(k=1) ^n k^4 ]+Σ_(k=1) ^n ((k^3 (k−1))/2)  =(1/2)(Σ_(k=1) ^n k^2 )^2 −(1/2)Σ_(k=1) ^n k^4 +(1/2)Σ_(k=1) ^n k^4 −(1/2)Σ_(k=1) ^n k^3   =(1/2)(Σ_(k=1) ^n k^2 )^2 −(1/2)Σ_(k=1) ^n k^3   =(1/2)[((n(n+1)(2n+1))/6)]^2 −(1/2)[((n(n+1))/2)]^2   =(((n−1)n^2 (n+1)^2 (n+2))/(18))  with n=100,  C_2 =((99×100^2 ×101^2 ×102)/(18))=57 227 610 000    (to be continued)

letn=100P=(1+x)(1+2x)2(1+3x)3...(1+100x)100=P1P2P3...Pk...PnPk=(1+kx)k=kr=0Crk(kx)rPk=1+k(kx)+k(k1)2!(kx)2+k(k1)(k2)3!(kx)3+k(k1)(k2)(k3)4!(kx)4+o(x4)=1+k2x+k3(k1)2x2+k4(k1)(k2)6x3+k5(k1)(k2)(k3)24x4+o(x4)Pk=1+ak,1x+ak,2x2+ak,3x3+ak,4x4+o(x4)withak¯,1=k2,ak,2=k3(k1)2,ak,3=k4(k1)(k2)6,ak,4=k5(k1)(k2)(k3)24k=1,2,3,...,ncoef.ofxterm:C1=nk=1ak,1=nk=1k2=n(n+1)(2n+1)6withn=100,C1=100×101×2016=338350coef.ofx2term:C2=nk=1nj=k+1ak,1aj,1+nk=1ak,2=12nk=1ak,1(nj=1aj,1ak,1)+nk=1ak,2=12[(nk=1ak,1)2nk=1ak,12]+nk=1ak¯2=12[(nk=1k2)2nk=1k4]+nk=1k3(k1)2=12(nk=1k2)212nk=1k4+12nk=1k412nk=1k3=12(nk=1k2)212nk=1k3=12[n(n+1)(2n+1)6]212[n(n+1)2]2=(n1)n2(n+1)2(n+2)18withn=100,C2=99×1002×1012×10218=57227610000(tobecontinued)

Commented by TawaTawa1 last updated on 26/Mar/20

Sweet, i will study this,  God bless you sir

Sweet,iwillstudythis,Godblessyousir

Commented by TawaTawa1 last updated on 26/Mar/20

Sir, your method too is needed in  Q85950.

Sir,yourmethodtooisneededinQ85950.

Commented by Prithwish Sen 1 last updated on 26/Mar/20

excellent sir.

excellentsir.

Commented by Prithwish Sen 1 last updated on 26/Mar/20

sir think I get it for x^3 . Please comment.

sirthinkIgetitforx3.Pleasecomment.

Commented by Prithwish Sen 1 last updated on 27/Mar/20

ΣΣΣa_(i,1) a_(j,1) a_(k,1) +ΣΣa_(i,1) a_(j,2) +Σa_(i,3)   I think it will be something like this.

ΣΣΣai,1aj,1ak,1+ΣΣai,1aj,2+Σai,3Ithinkitwillbesomethinglikethis.

Commented by Prithwish Sen 1 last updated on 26/Mar/20

I think u bave missed  the product of   a_(i,1) .a_(j,1) .a_(k,1)

Ithinkubavemissedtheproductofai,1.aj,1.ak,1

Commented by mr W last updated on 05/Apr/20

(continued)    let  K_2 =Σ_(k=1) ^n k^2 =((n(n+1)(2n+1))/6)  K_3 =Σ_(k=1) ^n k^3 =((n^2 (n+1)^2 )/4)  K_4 =Σ_(k=1) ^n k^4 =((n(n+1)(2n+1)(3n^2 +3n−1))/(30))=((3n^2 +3n−1)/5)K_2   K_5 =Σ_(k=1) ^n k^5 =((n^2 (n+1)^2 (2n^2 +2n−1))/(12))=((2n^2 +2n−1)/3)K_3   K_6 =Σ_(k=1) ^n k^6 =((n(n+1)(2n+1)(3n^4 +6n^3 −3n+1))/(42))=((3n^4 +6n^3 −3n+1)/7)K_2     coef. of x^3  term:  C_3 =C_(31) +C_(32) +C_(33)   with  C_(31) =Σ_(k≠j≠i) ^n a_(k,1) a_(j,1) a_(i,1)   C_(32) =Σ_(k,j=1,j≠k) ^n a_(k,1) a_(j,2)   C_(33) =Σ_(k=1) ^n a_(k,3)     C_(31) =(1/6)[(Σ_(k=1) ^n a_(k,1) )^3 −Σ_(k=1) ^n a_(k,1) ^3 −3Σ_(i=1) ^n a_(i,1) ^2 (Σ_(k=1) ^n a_(k,1) −a_(i,1) )]  =(1/6)[(Σ_(k=1) ^n a_(k,1) )^3 −Σ_(k=1) ^n a_(k,1) ^3 −3(Σ_(i=1) ^n a_(i,1) ^2 )(Σ_(k=1) ^n a_(k,1) )+3Σ_(i=1) ^n a_(i,1) ^3 ]  =(1/6)(K_2 ^3 −3K_4 K_2 +2K_6 )    C_(32) =Σ_(k=1) ^n a_(k,1) Σ_(j=1,j≠k) ^n a_(j,2)   =Σ_(k=1) ^n a_(k,1) (Σ_(j=1) ^n a_(j,2) −a_(k,2) )  =(Σ_(k=1) ^n a_(k,1) )(Σ_(j=1) ^n a_(j,2) )−Σ_(k=1) ^n a_(k,1) a_(k,2)   =(Σ_(k=1) ^n k^2 )(Σ_(k=1) ^n ((k^3 (k−1))/2))−Σ_(k=1) ^n ((k^2 k^3 (k−1))/2)  =(1/2)(K_2 K_4 −K_2 K_3 −K_6 +K_5 )    C_(33) =Σ_(k=1) ^n a_(k,3)   =Σ_(k=1) ^n ((k^4 (k−1)(k−2))/6)  =(1/6)(K_6 −3K_5 +2K_4 )    C_3 =(1/6)(K_2 ^3 −3K_2 K_4 +2K_6 )+(1/2)(K_2 K_4 −K_2 K_3 −K_6 +K_5 )+(1/6)(K_6 −3K_5 +2K_4 )  =(1/6)(K_2 ^3 −3K_2 K_3 +2K_4 )  =((n(n+1)(2n+1))/(36))[((n^2 (n+1)^2 (2n+1)^2 )/(36))−((3n^2 (n+1)^2 )/4)+((2(3n^2 +3n−1))/5)]  =((n(n+1)(2n+1))/(36))[((n^2 (n+1)^2 (2n^2 +2n−13))/(18))+((2(3n^2 +3n−1))/5)]  =(((n−1)n(n+1)(n+2)(2n+1)(10n^4 +20n^3 −35n^2 −45n+18))/(3240))  with n=100,  C_3 =((99×100×101×102×201×(10×100^4 +20×10^3 −35×100^2 −45×100+18))/(3240))  =6 451 445 040 986 110

(continued)letK2=nk=1k2=n(n+1)(2n+1)6K3=nk=1k3=n2(n+1)24K4=nk=1k4=n(n+1)(2n+1)(3n2+3n1)30=3n2+3n15K2K5=nk=1k5=n2(n+1)2(2n2+2n1)12=2n2+2n13K3K6=nk=1k6=n(n+1)(2n+1)(3n4+6n33n+1)42=3n4+6n33n+17K2coef.ofx3term:C3=C31+C32+C33withC31=nkjiak,1aj,1ai,1C32=nk,j=1,jkak,1aj,2C33=nk=1ak,3C31=16[(nk=1ak,1)3nk=1ak,133ni=1ai,12(nk=1ak,1ai,1)]=16[(nk=1ak,1)3nk=1ak,133(ni=1ai,12)(nk=1ak,1)+3ni=1ai,13]=16(K233K4K2+2K6)C32=nk=1ak,1nj=1,jkaj,2=nk=1ak,1(nj=1aj,2ak,2)=(nk=1ak,1)(nj=1aj,2)nk=1ak,1ak,2=(nk=1k2)(nk=1k3(k1)2)nk=1k2k3(k1)2=12(K2K4K2K3K6+K5)C33=nk=1ak,3=nk=1k4(k1)(k2)6=16(K63K5+2K4)C3=16(K233K2K4+2K6)+12(K2K4K2K3K6+K5)+16(K63K5+2K4)=16(K233K2K3+2K4)=n(n+1)(2n+1)36[n2(n+1)2(2n+1)2363n2(n+1)24+2(3n2+3n1)5]=n(n+1)(2n+1)36[n2(n+1)2(2n2+2n13)18+2(3n2+3n1)5]=(n1)n(n+1)(n+2)(2n+1)(10n4+20n335n245n+18)3240withn=100,C3=99×100×101×102×201×(10×1004+20×10335×100245×100+18)3240=6451445040986110

Commented by Prithwish Sen 1 last updated on 27/Mar/20

Thank you sir.I fix it sir.

Thankyousir.Ifixitsir.

Commented by mr W last updated on 06/Apr/20

coef. of x^4  term:    C_4 =C_(41) +C_(42) +C_(43) +C_(44) +C_(45)   with  C_(41) =Σ_(k≠i≠j≠h) a_(k,1) a_(i,1) a_(j,1) a_(h,1)   C_(42) =Σ_(k≠i≠j) a_(k,1) a_(i,1) a_(j,2)   C_(43) =Σ_(k≠i) a_(k,1) a_(i,3)   C_(44) =Σ_(k≠i) a_(k,2) a_(i,2)   C_(45) =Σ_(k=1) ^n a_(k,4)   .....  C_(42) =Σ_(k≠i≠j) a_(k,1) a_(i,1) a_(j,2)       C_(43) =Σ_(k≠i) a_(k,1) a_(i,3)   =(1/2)Σ_(k=1) ^n a_(k,1) (Σ_(i=1) ^n a_(i,3) −a_(k,3) )  =(1/2)[(Σ_(k=1) ^n a_(k,1) )(Σ_(i=1) ^n a_(i,3) )−Σ_(k=1) ^n a_(k,1) a_(k,3) ]  =(1/2)[(Σ_(k=1) ^n k^2 )(Σ_(i=1) ^n ((k^4 (k−1)(k−2))/6))−Σ_(k=1) ^n ((k^6 (k−1))k−2))/6)]  =(1/(12))[(Σ_(k=1) ^n k^2 )(Σ_(i=1) ^n k^4 (k−1)(k−2))−Σ_(k=1) ^n k^6 (k−1)(k−2)]  =(1/(12))[(Σ_(k=1) ^n k^2 )(Σ_(i=1) ^n (k^6 −3k^5 +2k^4 ))−Σ_(k=1) ^n (k^8 −3k^7 +2k^6 )]  =(1/(12))[K_2 (K_6 −3K_5 +2K_4 )−(K_8 −3K_7 +2K_6 )]  =(1/(12))(K_2 K_6 −3K_2 K_5 +2K_2 K_4 −K_8 +3K_7 −2K_6 )    C_(44) =Σ_(k≠i) a_(k,2) a_(i,2)   =(1/2)Σ_(k=1) ^n a_(k,2) (Σ_(i=1) ^n a_(i,2) −a_(k,2) )  =(1/2)[(Σ_(k=1) ^n a_(k,2) )^2 −Σ_(k=1) ^n a_(k,2) ^2 ]  =(1/2)[(Σ_(k=1) ^n ((k^3 (k−1))/2))^2 −Σ_(k=1) ^n ((k^6 (k−1)^2 )/4)]  =(1/8)[(K_4 −K_3 )^2 −(K_8 −2K_7 +K_6 )]  =(1/8)(K_4 ^2 −2K_3 K_4 +K_3 ^2 −K_8 +2K_7 −K_6 )    C_(45) =Σ_(k=1) ^n a_(k,4) =Σ_(k=1) ^n ((k^5 (k−1)(k−2)(k−3))/(24))  =(1/(24))(K_8 −6K_7 +11K_6 −6K_5 )  ......

coef.ofx4term:C4=C41+C42+C43+C44+C45withC41=kijhak,1ai,1aj,1ah,1C42=kijak,1ai,1aj,2C43=kiak,1ai,3C44=kiak,2ai,2C45=nk=1ak,4.....C42=kijak,1ai,1aj,2C43=kiak,1ai,3=12nk=1ak,1(ni=1ai,3ak,3)=12[(nk=1ak,1)(ni=1ai,3)nk=1ak,1ak,3]=12[(nk=1k2)(ni=1k4(k1)(k2)6)nk=1k6(k1))k2)6]=112[(nk=1k2)(ni=1k4(k1)(k2))nk=1k6(k1)(k2)]=112[(nk=1k2)(ni=1(k63k5+2k4))nk=1(k83k7+2k6)]=112[K2(K63K5+2K4)(K83K7+2K6)]=112(K2K63K2K5+2K2K4K8+3K72K6)C44=kiak,2ai,2=12nk=1ak,2(ni=1ai,2ak,2)=12[(nk=1ak,2)2nk=1ak,22]=12[(nk=1k3(k1)2)2nk=1k6(k1)24]=18[(K4K3)2(K82K7+K6)]=18(K422K3K4+K32K8+2K7K6)C45=nk=1ak,4=nk=1k5(k1)(k2)(k3)24=124(K86K7+11K66K5)......

Terms of Service

Privacy Policy

Contact: info@tinkutara.com