Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 85909 by jagoll last updated on 26/Mar/20

∫ sin^(−1)  ((√(x/(a+x)))) dx , a > 0

sin1(xa+x)dx,a>0

Commented byjohn santu last updated on 26/Mar/20

let (√(x/(a+x))) = n ⇒ x = ((an^2 )/(1−n^2 ))  I = ∫ sin^(−1) (n) × ((2an)/((1−n^2 )^2 )) dn  [ h = sin^(−1) (n) ⇒ n = sin h ]  I = 2a∫ h tan h sec^2 h dh   I = a ( h tan^2 h −∫ (sec^2 h −1)dh)  I = a (h tan^2 h −tan h + h) +c  ∴ I = x sin^(−1) ((√(x/(a+x))))−(√(ax)) + a sin^(−1) ((√(x/(a+x)))) + c

letxa+x=nx=an21n2 I=sin1(n)×2an(1n2)2dn [h=sin1(n)n=sinh] I=2ahtanhsec2hdh I=a(htan2h(sec2h1)dh) I=a(htan2htanh+h)+c I=xsin1(xa+x)ax+asin1(xa+x)+c

Commented byjagoll last updated on 26/Mar/20

thank you all

thankyouall

Answered by TANMAY PANACEA. last updated on 26/Mar/20

x=atan^2 α→(dx/dα)=a×2tanα×sec^2 α  (√((atan^2 α)/(a+atan^2 α))) =(√((sin^2 α)/(cos^2 α×sec^2 α))) =sinα  I=∫α.2atanα.sec^2 αdα  (I/(2a))=α∫tanαsec^2 αdα−∫[(dα/dα)∫tanαsec^2 αdα]dα  =α.((tan^2 α)/2)−(1/2)∫(sec^2 α−1)dα  =((αtan^2 α)/2)−((tanα)/2)+(α/2)  now α=tan^(−1) (√(x/a))   I=(((tan^(−1) (√(x/a)) ×(x/a))/2)−((√(x/a))/2)+((tan^(−1) (√(x/a)))/2))×2a  I=xtan^(−1) (√(x/a)) −a(√(x/a)) +atan^(−1) (√(x/a))   =(x+a)tan^(−1) (√(x/a)) −(√(ax))   pls check

x=atan2αdxdα=a×2tanα×sec2α atan2αa+atan2α=sin2αcos2α×sec2α=sinα I=α.2atanα.sec2αdα I2a=αtanαsec2αdα[dαdαtanαsec2αdα]dα =α.tan2α212(sec2α1)dα =αtan2α2tanα2+α2 nowα=tan1xa I=(tan1xa×xa2xa2+tan1xa2)×2a I=xtan1xaaxa+atan1xa =(x+a)tan1xaax plscheck

Answered by Kunal12588 last updated on 26/Mar/20

I=xsin^(−1) (√(x/(a+x)))−∫x×(1/(√(1−(x/(a+x)))))×(1/(2(√(x/(a+x)))))×((a+x−x)/((a+x)^2 ))dx  =xsin^(−1) (√(x/(a+x)))−∫x×((√(a+x))/(√a))×((√(a+x))/(2(√x)))×(a/((a+x)^2 ))dx  =xsin^(−1) (√(x/(a+x)))−(1/2)(√a)∫(√x)×(1/(a+x))dx  I_1 =∫((√x)/(a+x))dx  (√x)=t  dx=2(√x)dt  I_1 =2∫(x/(a+x))dt=2∫(t^2 /(a+t^2 ))dt  =2∫((a+t^2 )/(a+t^2 ))dt−2a∫(dt/(a+t^2 ))  =2t−2a×(1/(√a))tan^(−1) (t/(√a))+c  =2(√x)−2(√a) tan^(−1) ((√x)/(√a))+c  I=xsin^(−1) (√(x/(a+x)))−(1/2)(√a)(2(√x)−2(√a) tan^(−1) (√(x/a)))+C  I=xsin^(−1) (√(x/(a+x)))−(√(ax))+a tan^(−1) (√(x/a))+C

I=xsin1xa+xx×11xa+x×12xa+x×a+xx(a+x)2dx =xsin1xa+xx×a+xa×a+x2x×a(a+x)2dx =xsin1xa+x12ax×1a+xdx I1=xa+xdx x=t dx=2xdt I1=2xa+xdt=2t2a+t2dt =2a+t2a+t2dt2adta+t2 =2t2a×1atan1ta+c =2x2atan1xa+c I=xsin1xa+x12a(2x2atan1xa)+C I=xsin1xa+xax+atan1xa+C

Commented byKunal12588 last updated on 26/Mar/20

sin^(−1) (√(x/(a+x)))=tan^(−1) (√(x/a))  so Tanmay sir your answer is also correct!

sin1xa+x=tan1xa soTanmaysiryouranswerisalsocorrect!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com