Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 85914 by frc2crc last updated on 26/Mar/20

Let I_n =∫_(0 ) ^(π/4) (((1−tan A)/(1+tan A)))^n dA  what is  the Laplace Transform and the  Fourier Transform

$${Let}\:{I}_{{n}} =\overset{\pi/\mathrm{4}} {\int}_{\mathrm{0}\:} \left(\frac{\mathrm{1}−\mathrm{tan}\:{A}}{\mathrm{1}+\mathrm{tan}\:{A}}\right)^{{n}} {dA}\:\:{what}\:{is} \\ $$$${the}\:{Laplace}\:{Transform}\:{and}\:{the} \\ $$$${Fourier}\:{Transform} \\ $$

Answered by mind is power last updated on 26/Mar/20

I_n =∫_0 ^(π/4) (((cos(A)−sin(A))/(sin(A)+cos(A))))^n dA  =∫_0 ^(π/4) (−1)^n {((sin(A−(π/4)))/(cos(A−(π/4))))}^n   =(−1)^n ∫_0 ^(π/4) tg^n (A−(π/4))dA  y=A−(π/4)⇒dy=dA  =(−1)^n ∫_(−(π/4)) ^0 tg^n (y)dy,t=tg(y)⇒dy=(dt/(1+t^2 ))  =(−1)^n ∫_(−1) ^0 (t^n /(1+t^2 ))dt  =∫_0 ^1 (t^n /(1+t^2 ))dt=∫_0 ^1 t^n .(Σ_(k≥0) (−t^2 )^k )dt  =∫_0 ^1 Σ_(k≥0) (−1)^k t^(2k+n) dt=Σ_(k≥0) (((−1)^k )/(2k+n+1))  =Σ_(k≥0) ((Π_(t=0) ^(k−1) (((n+1)/2)+t).  Π_(t=0) ^(k−1) (1+t))/(2Π_(t=0) ^(k−1) (((n+3)/2)+t)))    (((−1)^k )/(k!))  =(1/2)Σ_(k≥0) (((1+t)_k (((n+1)/2)+t)_k )/((((n+3)/2)+t)_k )).(((−1)^k )/(k!^ ))  =((1 )/2) _2 F_1 (1,((n+1)/2);((n+3)/2);−1)

$${I}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \left(\frac{{cos}\left({A}\right)−{sin}\left({A}\right)}{{sin}\left({A}\right)+\mathrm{cos}\left(\mathrm{A}\right)}\right)^{{n}} {dA} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \left(−\mathrm{1}\right)^{{n}} \left\{\frac{{sin}\left({A}−\frac{\pi}{\mathrm{4}}\right)}{{cos}\left({A}−\frac{\pi}{\mathrm{4}}\right)}\right\}^{{n}} \\ $$$$=\left(−\mathrm{1}\right)^{{n}} \int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {tg}^{{n}} \left({A}−\frac{\pi}{\mathrm{4}}\right){dA} \\ $$$${y}={A}−\frac{\pi}{\mathrm{4}}\Rightarrow{dy}={dA} \\ $$$$=\left(−\mathrm{1}\right)^{{n}} \int_{−\frac{\pi}{\mathrm{4}}} ^{\mathrm{0}} {tg}^{{n}} \left({y}\right){dy},{t}={tg}\left({y}\right)\Rightarrow{dy}=\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$=\left(−\mathrm{1}\right)^{{n}} \int_{−\mathrm{1}} ^{\mathrm{0}} \frac{{t}^{{n}} }{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{t}^{{n}} }{\mathrm{1}+{t}^{\mathrm{2}} }{dt}=\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{{n}} .\left(\underset{{k}\geqslant\mathrm{0}} {\sum}\left(−{t}^{\mathrm{2}} \right)^{{k}} \right){dt} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{k}\geqslant\mathrm{0}} {\sum}\left(−\mathrm{1}\right)^{{k}} {t}^{\mathrm{2}{k}+{n}} {dt}=\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}{k}+{n}+\mathrm{1}} \\ $$$$=\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\underset{{t}=\mathrm{0}} {\overset{{k}−\mathrm{1}} {\prod}}\left(\frac{{n}+\mathrm{1}}{\mathrm{2}}+{t}\right).\:\:\underset{{t}=\mathrm{0}} {\overset{{k}−\mathrm{1}} {\prod}}\left(\mathrm{1}+{t}\right)}{\mathrm{2}\underset{{t}=\mathrm{0}} {\overset{{k}−\mathrm{1}} {\prod}}\left(\frac{{n}+\mathrm{3}}{\mathrm{2}}+{t}\right)}\:\:\:\:\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}!} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\left(\mathrm{1}+{t}\right)_{{k}} \left(\frac{{n}+\mathrm{1}}{\mathrm{2}}+{t}\right)_{{k}} }{\left(\frac{{n}+\mathrm{3}}{\mathrm{2}}+{t}\right)_{{k}} }.\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}!^{} } \\ $$$$=\frac{\mathrm{1}\:}{\mathrm{2}}\:_{\mathrm{2}} {F}_{\mathrm{1}} \left(\mathrm{1},\frac{{n}+\mathrm{1}}{\mathrm{2}};\frac{{n}+\mathrm{3}}{\mathrm{2}};−\mathrm{1}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com