Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 86003 by jagoll last updated on 26/Mar/20

y ′′ + y′ = sin x cos 2x

y+y=sinxcos2x

Commented by mathmax by abdo last updated on 26/Mar/20

let y^′ =z   (e)⇒z^′  +z =sinx cos2x  (he)→z^′  +z=0 ⇒(z^′ /z)=−1 ⇒ln∣z∣=−x +λ ⇒z =K e^(−x)    mvc method  z^′ =K^′  e^(−x)  −K e^(−x)   (e) ⇒K^′  e^(−x)  −K e^(−x)   +K e^(−x)  =sinx cos(2x) ⇒  K^′ (x) =e^x  sin(x)cos(2x) ⇒K(x) =∫_. ^x  e^t  sint cos(2t)dt  sint cos(2t) =cos((π/2)−t)cos(2t) =(1/2){cos((π/2)+t)+cos((π/2)−3t)}  =−(1/2)sint +(1/2)sin(3t) ⇒K(x)  =−(1/2)∫^x  e^t sint dt+(1/2)∫^x  e^t sin(3t)dt  ∫ e^t  sint dt =Im(∫ e^(t+it)  dt) =Im(∫ e^((1+i)t)  dt) and  ∫ e^((1+i)t)  dt =(1/(1+i))e^((1+i)t)  =((1−i)/2) e^t { cost +isint}  =(e^t /2){cost +isint −icost +sint} ⇒∫^x  e^t  sint dt=(e^t /2)(sint−cost) +c_0   ∫ e^t  sin(3t)dt =Im(∫ e^((1+3i)t)  dt) and   ∫ e^((1+3i)t)  dt =(1/(1+3i))e^((1+3i)t)  +c_1 =((1−3i)/(10))e^t {cos(3t)+isin(3t)}  =(e^t /(10)){ cos(3t)+isin(3t)−3i cos(3t)+3 sin(3t)}  ⇒∫^x  e^t  sin(3t)dt =(e^x /(10)){sin(3x)−3cos(3x)} ⇒  K(x)=−(1/4)e^x ( sinx−cosx) +(e^x /(20))(sin(3x)−3cos(3x)) +C  z(x)=K(x) e^(−x)  =−(1/4)(sinx−cosx)+(1/(20))(sin(3x)−3cos(3x))+Ce^(−x)   y^′  =z ⇒y(x) =∫^x  z(u)du +λ  =∫^x {−(1/4)(sinu−cosu)+(1/(20))(sin(3u)−3cos(3u)) +C e^(−u) }du +λ  y(x)=(1/4)(cosx +sinx) +(1/(20))(−(1/3) sin(3x)−sin(3x))−C e^(−x)  +λ

lety=z(e)z+z=sinxcos2x(he)z+z=0zz=1lnz∣=x+λz=Kexmvcmethodz=KexKex(e)KexKex+Kex=sinxcos(2x)K(x)=exsin(x)cos(2x)K(x)=.xetsintcos(2t)dtsintcos(2t)=cos(π2t)cos(2t)=12{cos(π2+t)+cos(π23t)}=12sint+12sin(3t)K(x)=12xetsintdt+12xetsin(3t)dtetsintdt=Im(et+itdt)=Im(e(1+i)tdt)ande(1+i)tdt=11+ie(1+i)t=1i2et{cost+isint}=et2{cost+isinticost+sint}xetsintdt=et2(sintcost)+c0etsin(3t)dt=Im(e(1+3i)tdt)ande(1+3i)tdt=11+3ie(1+3i)t+c1=13i10et{cos(3t)+isin(3t)}=et10{cos(3t)+isin(3t)3icos(3t)+3sin(3t)}xetsin(3t)dt=ex10{sin(3x)3cos(3x)}K(x)=14ex(sinxcosx)+ex20(sin(3x)3cos(3x))+Cz(x)=K(x)ex=14(sinxcosx)+120(sin(3x)3cos(3x))+Cexy=zy(x)=xz(u)du+λ=x{14(sinucosu)+120(sin(3u)3cos(3u))+Ceu}du+λy(x)=14(cosx+sinx)+120(13sin(3x)sin(3x))Cex+λ

Answered by john santu last updated on 26/Mar/20

y_(h ) = C_1 cos x+C_2 sin x  y′′ + y′ = (1/2)sin 3x−(1/2)sin x  y_p  = Asin 3x+Bcos 3x+Cx sin x+ Dx cos x  y^′  = 3Acos 3x−3Bsin 3x+Csin x  +Cxcos x+Dcos x−Dxsin x  y′′ = −9Asin 3x−9Bcos 3x+2Ccos x   −Cxsin x−2Dsin x−Dxcos x  ⇒ A= −(1/(16)) , B = 0 , C = 0  D = (1/4).  ⇒y_(p ) = −(1/(16))sin 3x+(x/4)sin x

yh=C1cosx+C2sinxy+y=12sin3x12sinxyp=Asin3x+Bcos3x+Cxsinx+Dxcosxy=3Acos3x3Bsin3x+Csinx+Cxcosx+DcosxDxsinxy=9Asin3x9Bcos3x+2CcosxCxsinx2DsinxDxcosxA=116,B=0,C=0D=14.yp=116sin3x+x4sinx

Terms of Service

Privacy Policy

Contact: info@tinkutara.com