Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 86062 by ar247 last updated on 26/Mar/20

∫((√(x^2 −25))/x)dx

x225xdx

Commented by abdomathmax last updated on 27/Mar/20

I =∫((√(x^2 −25))/x)dx  changement (√(x^2 −25))=t give  x^2 =t^2  +25 ⇒xdx=t dt ⇒dx=((tdt)/x) ⇒(dx/x) =((tdt)/x^2 )  =((tdt)/(t^2  +25)) ⇒ I =∫  t (((tdt)/(t^(2 ) +25)))  =∫  ((t^2  dt)/(t^2  +25)) =∫ dt −∫  ((25dt)/(t^2  +25)) =t−25∫   (dt/(t^2 +25))  =_(t=5u)     t−25 ∫   ((5du)/(25(u^2  +1))) =t −5 arctan((t/5))+C  =(√(x^2 −25)) −5arctan(((√(x^2 −25))/5)) +C

I=x225xdxchangementx225=tgivex2=t2+25xdx=tdtdx=tdtxdxx=tdtx2=tdtt2+25I=t(tdtt2+25)=t2dtt2+25=dt25dtt2+25=t25dtt2+25=t=5ut255du25(u2+1)=t5arctan(t5)+C=x2255arctan(x2255)+C

Answered by john santu last updated on 27/Mar/20

(√(x^2 −25)) = t  x^2 = t^2 +25 ⇒ x dx = t dt  (dx/x) = ((t dt)/(t^2 +25))  ⇒ ∫ ((t.t)/(t^2 +25)) dt = ∫ ((t^2 +25−25)/(t^2 +25)) dt  = ∫ dt − 25 ∫ (dt/(t^2 +25))  = t −5tan^(−1) ((t/5)) +c  = (√(x^2 −25)) − 5tan^(−1) (((√(x^2 +25))/5)) + c

x225=tx2=t2+25xdx=tdtdxx=tdtt2+25t.tt2+25dt=t2+2525t2+25dt=dt25dtt2+25=t5tan1(t5)+c=x2255tan1(x2+255)+c

Commented by john santu last updated on 27/Mar/20

o yes. thank you

oyes.thankyou

Commented by ar247 last updated on 26/Mar/20

        ∫dt−25∫(dt/(t^2 +25)) = t−5tan^(−1) ((t/5))+c   right?

dt25dtt2+25=t5tan1(t5)+cright?

Commented by jagoll last updated on 26/Mar/20

∫ 25 ((dt/(t^2 +25))) =  t = 5 tan u ⇒ dt = 5 sec^2 u du  25 ∫ ((5sec^2 u du)/(25 sec^2 u )) = 5 tan^(−1) ((u/5))

25(dtt2+25)=t=5tanudt=5sec2udu255sec2udu25sec2u=5tan1(u5)

Commented by jagoll last updated on 26/Mar/20

sir john ,typo sir in line 6

sirjohn,typosirinline6

Answered by Rio Michael last updated on 26/Mar/20

 ∫((√(x^2 −25))/x) dx   let x = (5/(cos θ)) ⇒  ((√(x^2 −25))/x) = sin x  ∫((√(x^2 −25))/x) dx = 5∫((sin^2 θ)/(cos^2 θ)) dθ = 5∫tan^2 θ dθ                             = 5(tan θ − θ + k)   ⇒ ∫((√(x^2 −25))/x)dx = 5 [ tan (arcos ((5/x)))−arcos((5/x)) + k]

x225xdxletx=5cosθx225x=sinxx225xdx=5sin2θcos2θdθ=5tan2θdθ=5(tanθθ+k)x225xdx=5[tan(arcos(5x))arcos(5x)+k]

Terms of Service

Privacy Policy

Contact: info@tinkutara.com