Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 86128 by M±th+et£s last updated on 27/Mar/20

⌊2x−(1/2)⌋=⌊∣x∣−(1/2)⌋=2x−2

2x12=x12=2x2

Answered by mr W last updated on 27/Mar/20

⌊2x−(1/2)⌋−⌊∣x∣−(1/2)⌋=2x−2  ⌊2x−(1/2)⌋−⌊∣x∣−(1/2)⌋=2x−2=n= { ((2k)),((2k+1)) :}  ⇒x=(n/2)+1= { ((k+1)),((k+(3/2))) :}  case n≥−2 or k≥−1  x≥0  ⌊2x−(1/2)⌋=⌊n+1+(1/2)⌋=n+1= { ((2k+1)),((2k+2)) :}  ⌊∣x∣−(1/2)⌋=⌊(n/2)+(1/2)⌋= { (k),((k+1)) :}  2k+1−k=2k  ⇒k=1 ⇒n=2 ⇒x=2  2k+2−k−1=2k+1  ⇒k=0 ⇒n=1 ⇒ x=(3/2)    case n<−2 or k<−1  x<0  ⌊2x−(1/2)⌋=⌊n+1+(1/2)⌋=n+1= { ((2k+1)),((2k+2)) :}  ⌊∣x∣−(1/2)⌋=⌊−(n/2)−2+(1/2)⌋= { ((−k−2)),((−k−2)) :}  2k+1+k+2=2k  ⇒k=−3 ⇒n=−6 ⇒x=−2  2k+2+k+2=2k+1  ⇒k=−3 ⇒n=−5 ⇒x=−(3/2)    summary of solutions:  x=−2, −(3/2), (3/2), 2

2x12x12=2x22x12x12=2x2=n={2k2k+1x=n2+1={k+1k+32casen2ork1x02x12=n+1+12=n+1={2k+12k+2x12=n2+12={kk+12k+1k=2kk=1n=2x=22k+2k1=2k+1k=0n=1x=32casen<2ork<1x<02x12=n+1+12=n+1={2k+12k+2x12=n22+12={k2k22k+1+k+2=2kk=3n=6x=22k+2+k+2=2k+1k=3n=5x=32summaryofsolutions:x=2,32,32,2

Commented by M±th+et£s last updated on 27/Mar/20

god bless you sir. but i think that x=−(3/2)  is a solution too

godblessyousir.butithinkthatx=32isasolutiontoo

Commented by mr W last updated on 27/Mar/20

yes. i overlooked a value.

yes.ioverlookedavalue.

Commented by M±th+et£s last updated on 27/Mar/20

nice solution sir thank you

nicesolutionsirthankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com