Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 86132 by M±th+et£s last updated on 27/Mar/20

∫x^3  sin(2x^2 +6)^5  dx

x3sin(2x2+6)5dx

Answered by Kunal12588 last updated on 27/Mar/20

I=∫x^3  sin(2x^2 +6)^5  dx  let  2x^2 +6=t  ⇒4x dx = dt  I=(1/4)∫((t/2)−3) sin t^5  dt  =(1/4)[((t/2)−3)∫sin t^5 −(1/2)∫(∫sin t^5 dt)dt]  let ∫sin t^5 dt = F(t)+c  I=(1/8)(t−6)F(t)+(1/8)(ta−6a)−(1/8)∫(F(t)+b)dt  =(1/8)(t−6)F(t)+(a/8)t−(b/8)t−(1/8)∫F(t)dt−(3/4)a  =(1/8)(t−6)F(t)+ct−(1/8)∫F(t)dt  + C  And now it “may be” easy for the persons  who knows ∫sin x^5  dx   :)

I=x3sin(2x2+6)5dxlet2x2+6=t4xdx=dtI=14(t23)sint5dt=14[(t23)sint512(sint5dt)dt]letsint5dt=F(t)+cI=18(t6)F(t)+18(ta6a)18(F(t)+b)dt=18(t6)F(t)+a8tb8t18F(t)dt34a=18(t6)F(t)+ct18F(t)dt+CAndnowitmaybeeasyforthepersonswhoknowssinx5dx:)

Commented by M±th+et£s last updated on 27/Mar/20

thank you sir

thankyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com