Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 8628 by sou1618 last updated on 18/Oct/16

is it always satisfying?  A=lim[n→∞]∫f(n,x)dx  B=∫lim[n→∞]f(n,x)dx  A=B??  please show counter example      checking  (1)  f(n,x)=x^n   ,x[0→1]  A=lim_(n→∞) ∫_0 ^1 x^n dx=lim_(n→∞) (1/(n+1))x^(n+1) =0  B=∫_0 ^1 lim_(n→∞) x^n dx=∫_0 ^1 0dx=0  so  A=B    (2)  f(n,x)=(1+(x/n))^n   A=lim_(n→∞) ∫(1+(x/n))^n dx    =lim_(n→∞) (n/((n+1)))(1+(x/n))^(n+1)     =e^x   B=∫lim_(n→∞) (1+(x/n))^n dx    =∫e^x dx    =e^x   so  A=B    . . .

$${is}\:{it}\:{always}\:{satisfying}? \\ $$$$\boldsymbol{{A}}=\mathrm{lim}\left[{n}\rightarrow\infty\right]\int{f}\left({n},{x}\right){dx} \\ $$$$\boldsymbol{{B}}=\int\mathrm{lim}\left[{n}\rightarrow\infty\right]{f}\left({n},{x}\right){dx} \\ $$$${A}={B}?? \\ $$$${please}\:{show}\:{counter}\:{example} \\ $$$$ \\ $$$$ \\ $$$${checking} \\ $$$$\left(\mathrm{1}\right) \\ $$$${f}\left({n},{x}\right)={x}^{{n}} \:\:,{x}\left[\mathrm{0}\rightarrow\mathrm{1}\right] \\ $$$${A}={lim}_{{n}\rightarrow\infty} \int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}} {dx}={lim}_{{n}\rightarrow\infty} \frac{\mathrm{1}}{{n}+\mathrm{1}}{x}^{{n}+\mathrm{1}} =\mathrm{0} \\ $$$${B}=\int_{\mathrm{0}} ^{\mathrm{1}} {lim}_{{n}\rightarrow\infty} {x}^{{n}} {dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{0}{dx}=\mathrm{0} \\ $$$${so}\:\:{A}={B} \\ $$$$ \\ $$$$\left(\mathrm{2}\right) \\ $$$${f}\left({n},{x}\right)=\left(\mathrm{1}+\frac{{x}}{{n}}\right)^{{n}} \\ $$$${A}={lim}_{{n}\rightarrow\infty} \int\left(\mathrm{1}+\frac{{x}}{{n}}\right)^{{n}} {dx} \\ $$$$\:\:={lim}_{{n}\rightarrow\infty} \frac{{n}}{\left({n}+\mathrm{1}\right)}\left(\mathrm{1}+\frac{{x}}{{n}}\right)^{{n}+\mathrm{1}} \\ $$$$\:\:={e}^{{x}} \\ $$$${B}=\int{lim}_{{n}\rightarrow\infty} \left(\mathrm{1}+\frac{{x}}{{n}}\right)^{{n}} {dx} \\ $$$$\:\:=\int{e}^{{x}} {dx} \\ $$$$\:\:={e}^{{x}} \\ $$$${so}\:\:{A}={B} \\ $$$$ \\ $$$$.\:.\:. \\ $$

Answered by prakash jain last updated on 18/Oct/16

Limit and integral exhange is NOT  always allowed.  It is permitted if the function converges  uniformly.  123456 may be able provide more inputs.

$$\mathrm{Limit}\:\mathrm{and}\:\mathrm{integral}\:\mathrm{exhange}\:\mathrm{is}\:\mathrm{NOT} \\ $$$$\mathrm{always}\:\mathrm{allowed}. \\ $$$$\mathrm{It}\:\mathrm{is}\:\mathrm{permitted}\:\mathrm{if}\:\mathrm{the}\:\mathrm{function}\:\mathrm{converges} \\ $$$$\mathrm{uniformly}. \\ $$$$\mathrm{123456}\:\mathrm{may}\:\mathrm{be}\:\mathrm{able}\:\mathrm{provide}\:\mathrm{more}\:\mathrm{inputs}. \\ $$

Commented by sou1618 last updated on 19/Oct/16

thanks.

$${thanks}. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com