All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 86447 by Chi Mes Try last updated on 28/Mar/20
Commented by mathmax by abdo last updated on 29/Mar/20
letf(t)=∫0∞arctan(tx2+a2)(1+x2)x2+a2dxwitht>0f′(t)=∫0∞1(1+x2)(1+t2(x2+a2)dx=∫0∞dx(1+x2)(1+t2x2+a2t2)=∫0∞dx(x2+1)(t2x2+a2t2+1)=1t2∫0∞dx(x2+1)(x2+a2t2+1t2)⇒2t2f′(t)=∫−∞+∞dx(x−i)(x+i)(x−ia2t2+1t)(x+ia2t2+1t)letφ(z)=1(z2+1)(z2+a2t2+1t2)∫−∞+∞φ(z)dz=2iπ{Res(φ,i)+Res(φ,ia2t2+1t)}Res(φ,i)=12i(−1+a2t2+1t2)=t22i(a2t2+1−t2)=t22i{(a2−1)t2+1)}Res(φ,ia2t2+1t)=12ia2t2+1t(−a2t2+1t2+1)=t32ia2t2+1(t2−a2t2−1)=t32ia2t2+1((1−a2)t2−1)⇒∫−∞+∞φ(z)dz=2iπ{t22i{(a2−1)t2+1}+t32ia2t2+1{(1−a2)t2−1}}=πt2(a2−1)t2+1+πt3a2t2+1{(1−a2)t2−1}=2t2f′(t)⇒f′(t)=π2{(a2−1)t2+1}+πt2a2t2+1{(1−a2)u2−1}⇒f(t)=∫0tπdu2{(a2−1)u2+1}+π2∫0tudua2u2+1{(1−a2)u2−1}+cc=f(0)=0I=f(1)=π2∫01du(a2−1)u2+1+π2∫01udua2u2+1{(1−a2)u2−1}....becontinued....
Terms of Service
Privacy Policy
Contact: info@tinkutara.com