Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 86447 by Chi Mes Try last updated on 28/Mar/20

Commented by mathmax by abdo last updated on 29/Mar/20

let f(t) =∫_0 ^∞   ((arctan(t(√(x^2 +a^2 ))))/((1+x^2 )(√(x^2  +a^2 ))))dx   with t>0  f^′ (t)=∫_0 ^∞      (1/((1+x^2 )(1+t^2 (x^2  +a^2 )))dx  =∫_0 ^∞   (dx/((1+x^2 )(1+t^2 x^2  +a^2 t^2 ))) =∫_0 ^∞     (dx/((x^2  +1)(t^2 x^2  +a^2 t^2 +1)))  =(1/t^2 )∫_0 ^∞    (dx/((x^2  +1)(x^2 +((a^2 t^2  +1)/t^2 )))) ⇒  2t^2 f^′ (t) =∫_(−∞) ^(+∞)  (dx/((x−i)(x+i)(x−i((√(a^2 t^2  +1))/t))(x+i((√(a^2 t^2 +1))/t))))  let ϕ(z) =(1/((z^2  +1)(z^2  +((a^2 t^2 +1)/t^2 ))))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ {Res(ϕ,i)+Res(ϕ,i((√(a^2 t^2 +1))/t))}  Res(ϕ,i) =(1/(2i(−1+((a^2 t^2  +1)/t^2 )))) =(t^2 /(2i(a^2 t^2 +1−t^2 ))) =(t^2 /(2i{(a^2 −1)t^2 +1)}))  Res(ϕ,i((√(a^2 t^2 +1))/t)) =(1/(2i((√(a^2 t^2 +1))/t)( −((a^2 t^2  +1)/t^2 )+1)))  =(t^3 /(2i(√(a^2 t^2 +1))(t^2 −a^2 t^2 −1))) =(t^3 /(2i(√(a^2 t^2 +1))((1−a^2 )t^2 −1))) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{  (t^2 /(2i{(a^2 −1)t^2  +1})) +(t^3 /(2i(√(a^2 t^2 +1)){(1−a^2 )t^2 −1}))}  =((πt^2 )/((a^2 −1)t^2  +1)) +((πt^3 )/((√(a^2 t^2 +1)){(1−a^2 )t^2 −1}))=2t^2 f^′ (t) ⇒  f^′ (t) =(π/(2{(a^2 −1)t^2  +1})) +((πt)/(2(√(a^2 t^2  +1)){(1−a^2 )u^2 −1})) ⇒  f(t) =∫_0 ^t   ((πdu)/(2{(a^2 −1)u^2  +1})) +(π/2)∫_0 ^t  ((udu)/((√(a^2 u^2 +1)){(1−a^2 )u^2 −1})) +c  c=f(0)=0  I =f(1) =(π/2)∫_0 ^1     (du/((a^2 −1)u^2  +1)) +(π/2)∫_0 ^1  ((udu)/((√(a^2 u^2 +1)){(1−a^2 )u^2 −1}))  ....be continued....

letf(t)=0arctan(tx2+a2)(1+x2)x2+a2dxwitht>0f(t)=01(1+x2)(1+t2(x2+a2)dx=0dx(1+x2)(1+t2x2+a2t2)=0dx(x2+1)(t2x2+a2t2+1)=1t20dx(x2+1)(x2+a2t2+1t2)2t2f(t)=+dx(xi)(x+i)(xia2t2+1t)(x+ia2t2+1t)letφ(z)=1(z2+1)(z2+a2t2+1t2)+φ(z)dz=2iπ{Res(φ,i)+Res(φ,ia2t2+1t)}Res(φ,i)=12i(1+a2t2+1t2)=t22i(a2t2+1t2)=t22i{(a21)t2+1)}Res(φ,ia2t2+1t)=12ia2t2+1t(a2t2+1t2+1)=t32ia2t2+1(t2a2t21)=t32ia2t2+1((1a2)t21)+φ(z)dz=2iπ{t22i{(a21)t2+1}+t32ia2t2+1{(1a2)t21}}=πt2(a21)t2+1+πt3a2t2+1{(1a2)t21}=2t2f(t)f(t)=π2{(a21)t2+1}+πt2a2t2+1{(1a2)u21}f(t)=0tπdu2{(a21)u2+1}+π20tudua2u2+1{(1a2)u21}+cc=f(0)=0I=f(1)=π201du(a21)u2+1+π201udua2u2+1{(1a2)u21}....becontinued....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com