Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 86461 by Rio Michael last updated on 28/Mar/20

Use exponential representation of sin θ and cos θ to show that  a) sin^2  θ + cos^2  θ = 1                b) cos^2 θ − sin^2 θ = cos2θ  c) 2 sinθ cosθ = 2sin2θ.

Useexponentialrepresentationofsinθandcosθtoshowthata)sin2θ+cos2θ=1b)cos2θsin2θ=cos2θc)2sinθcosθ=2sin2θ.

Answered by TANMAY PANACEA. last updated on 28/Mar/20

c)2sinθcosθ  =(2/i)(isinθ)(cosθ)  =(2/i)×(((e^(iθ) −e^(−iθ) )/2))(((e^(iθ) +e^(−iθ) )/2))  =(2/i)×(1/4)×(e^(i2θ) −e^(−i2θ) )  =(1/(2i))×(2isin2θ)=sin2θ

c)2sinθcosθ=2i(isinθ)(cosθ)=2i×(eiθeiθ2)(eiθ+eiθ2)=2i×14×(ei2θei2θ)=12i×(2isin2θ)=sin2θ

Answered by TANMAY PANACEA. last updated on 28/Mar/20

e^(iθ) =cosθ+isinθ     e^(−iθ) =cosθ−isinθ  cosθ=((e^(iθ) +e^(−iθ) )/2)      isinθ=((e^(iθ) −e^(−iθ) )/2)  a)cos^2 θ+sin^2 θ  =cos^2 θ−(isinθ)^2   =(((e^(iθ) +e^(−iθ) )/2))^2 −(((e^(iθ) −e^(−iθ) )/2))^2   =((4×e^(iθ) ×e^(−iθ) )/4)=1

eiθ=cosθ+isinθeiθ=cosθisinθcosθ=eiθ+eiθ2isinθ=eiθeiθ2a)cos2θ+sin2θ=cos2θ(isinθ)2=(eiθ+eiθ2)2(eiθeiθ2)2=4×eiθ×eiθ4=1

Commented by Rio Michael last updated on 28/Mar/20

thank you sir

thankyousir

Commented by peter frank last updated on 29/Mar/20

thank you sir

thankyousir

Answered by TANMAY PANACEA. last updated on 28/Mar/20

b)cos^2 θ−sin^2 θ  =cos^2 θ+(isinθ)^2   =(((e^(iθ) +e^(−iθ) )/2))^2 +(((e^(iθ) −e^(−iθ) )/2))^2   =((2(e^(i2θ) +e^(−i2θ) ))/4)=((2cos2θ)/2)=cos2θ

b)cos2θsin2θ=cos2θ+(isinθ)2=(eiθ+eiθ2)2+(eiθeiθ2)2=2(ei2θ+ei2θ)4=2cos2θ2=cos2θ

Terms of Service

Privacy Policy

Contact: info@tinkutara.com