Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 86484 by Ar Brandon last updated on 28/Mar/20

∫(x^6 /(1+x^(12) ))dx

x61+x12dx

Commented by Ar Brandon last updated on 29/Mar/20

Hi mathmax, I don't understand the second line of your solution. How did you do that ?

Commented by redmiiuser last updated on 29/Mar/20

sir can you pls check  the answer

sircanyouplschecktheanswer

Commented by Ar Brandon last updated on 29/Mar/20

How did you arrive there please ? ��

Commented by mathmax by abdo last updated on 29/Mar/20

z^(12)  +1 =0 ⇒z^(12) =−1 =e^(i(2k+1)π)  ⇒z_k =e^((i(2k+1)π)/(12))   k∈[[0,11]  ⇒(x^6 /(x^(12)  +1)) =(x^6 /(Π_(k=0) ^(11) (x−z_k ))) =Σ_(k=0) ^(11)  (a_k /(x−z_k ))  a_k =(z_k ^6 /(12z_k ^(11) )) =(z_k ^7 /(−12)) ⇒(x^6 /(x^(12)  +1)) =−(1/(12))Σ_(k=0) ^(11)  (z_k ^7 /(x−z_k )) ⇒  ∫  (x^6 /(x^(12) +1))dx =−(1/(12))Σ_(k=0) ^(11)  z_k ^7 ln(x−z_k ) +C

z12+1=0z12=1=ei(2k+1)πzk=ei(2k+1)π12k[[0,11]x6x12+1=x6k=011(xzk)=k=011akxzkak=zk612zk11=zk712x6x12+1=112k=011zk7xzkx6x12+1dx=112k=011zk7ln(xzk)+C

Commented by mathmax by abdo last updated on 29/Mar/20

its a like theorem if F =((p(x))/(Q(x)))  with degp<degQ and  Q without real roots (⇒Q(x) =λΠ_i (x−z_i )) so  F(x)=Σ_i   (a_i /(x−z_i ))  and a_i =((p(z_i ))/(Q^′ (z_i )))

itsaliketheoremifF=p(x)Q(x)withdegp<degQandQwithoutrealroots(Q(x)=λi(xzi))soF(x)=iaixziandai=p(zi)Q(zi)

Commented by Ar Brandon last updated on 29/Mar/20

Oh ! Thanks ��

Commented by Ar Brandon last updated on 29/Mar/20

what about a_k =(z_k ^6 /(12z_k ^(11) ))=(z_k ^7 /(−12))  ?

whataboutak=zk612zk11=zk712?

Commented by mathmax by abdo last updated on 30/Mar/20

because z_k ^(12) =−1

becausezk12=1

Commented by floor(10²Eta[1]) last updated on 09/Jul/20

hey mathmax where i can see the   demonstration of this theorem?

heymathmaxwhereicanseethedemonstrationofthistheorem?

Answered by redmiiuser last updated on 29/Mar/20

(1+x^(12) )^(−1)   =1+(−1)x^(12) +(((−1)(−1−1)x^(24) )/(2!))+(((−1)(−1−1)(−1−2)x^(36) )/(3!))+(((−1)(−1−1)(−1−2)(−1−3)x^(48) )/(4!))+....∞  =Σ_(n=0) ^∞ (((−1)^n .n!.(x^(12) )^n )/(n!))  =Σ_(n=0) ^∞ (−1)^n .(x^(12) )^n   ∴x^6 .(1+x^(12) )^(−1)   =x^6 .Σ_(n=0) ^∞ (−1)^n .(x^(12n) )  =Σ_(n=0) ^∞ (−1)^n .(x^(12n+6) )  ∴∫Σ_(n=0) ^∞ (−1)^n .(x^(12n+6) ).dx  =Σ_(n=0) ^∞ (((−1)^n .(x^(12n+7) ))/(12n+7))

(1+x12)1=1+(1)x12+(1)(11)x242!+(1)(11)(12)x363!+(1)(11)(12)(13)x484!+....=n=0(1)n.n!.(x12)nn!=n=0(1)n.(x12)nx6.(1+x12)1=x6.n=0(1)n.(x12n)=n=0(1)n.(x12n+6)n=0(1)n.(x12n+6).dx=n=0(1)n.(x12n+7)12n+7

Commented by redmiiuser last updated on 29/Mar/20

welcome sir

welcomesir

Commented by Ar Brandon last updated on 29/Mar/20

Wow ! great idea. Thanks ! ��

Commented by redmiiuser last updated on 29/Mar/20

pls check the answer

plschecktheanswer

Answered by MJS last updated on 29/Mar/20

∫(x^6 /(x^(12) +1))dx=  =(((√6)−(√2))/(24))∫(x/(x^2 −(((√6)+(√2))/2)x+1))dx−  −(((√6)−(√2))/(24))∫(x/(x^2 +(((√6)+(√2))/2)x+1))dx+  +(((√6)+(√2))/(24))∫(x/(x^2 −(((√6)−(√2))/2)x+1))dx−  −(((√6)+(√2))/(24))∫(x/(x^2 +(((√6)−(√2))/2)x+1))dx−  −((√2)/(12))∫(x/(x^2 −(√2)x+1))dx+  +((√2)/(12))∫(x/(x^2 +(√2)x+1))dx  now use formula

x6x12+1dx==6224xx26+22x+1dx6224xx2+6+22x+1dx++6+224xx2622x+1dx6+224xx2+622x+1dx212xx22x+1dx++212xx2+2x+1dxnowuseformula

Commented by Ar Brandon last updated on 29/Mar/20

I also used a method similar to yours and it was so bulky  I made use of the fact that cos ((𝛑/(12)))=(((√6)+(√2))/4)  and  sin((𝛑/(12)))=(((√6)−(√2))/4)  Was that the same idea which you  used ?

IalsousedamethodsimilartoyoursanditwassobulkyImadeuseofthefactthatcos(π12)=6+24andsin(π12)=624Wasthatthesameideawhichyouused?

Commented by MJS last updated on 29/Mar/20

yes

yes

Terms of Service

Privacy Policy

Contact: info@tinkutara.com