Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 86490 by ram roop sharma last updated on 29/Mar/20

If  sin θ + cos θ=(√2) cos θ then  cos θ−sin θ is equal to

Ifsinθ+cosθ=2cosθthencosθsinθisequalto

Commented by john santu last updated on 29/Mar/20

sin θ = (√2) cos θ−cos θ  tan θ = (√2) −1   let cos θ−sin θ = k   sin θ−cos θ = −k  (sin θ−cos θ)(sin θ+cos θ) = −k(√2) cos θ  −cos 2θ = −k(√2) cos θ  2cos^2 θ −1 = k(√2) cos θ  k = ((2cos^2 θ−1)/((√2) cos θ)) = (√2) cos θ−(1/(√2)) cos θ  = (√2) ((1/((√2) ((√(2−(√2)))))))−(1/(2(√(2−(√2)))))  = (1/(√(2−(√2)))) − (1/(2(√(2−(√2))))) = (1/(2(√(2−(√2)))))

sinθ=2cosθcosθtanθ=21letcosθsinθ=ksinθcosθ=k(sinθcosθ)(sinθ+cosθ)=k2cosθcos2θ=k2cosθ2cos2θ1=k2cosθk=2cos2θ12cosθ=2cosθ12cosθ=2(12(22))1222=1221222=1222

Answered by som(math1967) last updated on 29/Mar/20

sinθ=((√2)−1)cosθ  ((√2)+1)sinθ=((√2)+1)((√2)−1)cosθ  (√2)sinθ +sinθ=1.cosθ  (√2)sinθ=cosθ−sinθ  ∴cosθ−sinθ=(√2)sinθ ans

sinθ=(21)cosθ(2+1)sinθ=(2+1)(21)cosθ2sinθ+sinθ=1.cosθ2sinθ=cosθsinθcosθsinθ=2sinθans

Commented by peter frank last updated on 29/Mar/20

thank you

thankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com