Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 86491 by john santu last updated on 29/Mar/20

∫  ((x^2 +1)/(x^4 +1)) dx ?

x2+1x4+1dx?

Commented by john santu last updated on 29/Mar/20

dear prof mr mjs. what the super  easy method ?

dearprofmrmjs.whatthesupereasymethod?

Answered by som(math1967) last updated on 29/Mar/20

∫(((x^2 +1)/x^2 )/((x^4 +1)/x^2 ))dx  ∫((1+(1/x^2 ))/(x^2 +(1/x^2 )))dx  ∫((d(x−(1/x)))/((x−(1/x))^2 +((√2))^2 ))  (1/(√2))tan^(−1) (((x−(1/x))/(√2))) +C

x2+1x2x4+1x2dx1+1x2x2+1x2dxd(x1x)(x1x)2+(2)212tan1(x1x2)+C

Commented by john santu last updated on 29/Mar/20

good answer

goodanswer

Commented by som(math1967) last updated on 29/Mar/20

Thank you sir

Thankyousir

Answered by MJS last updated on 29/Mar/20

other method:  ∫((x^2 +1)/(x^4 +1))dx=  =(1/2)∫(dx/(x^2 −(√2)x+1))+(1/2)∫(dx/(x^2 +(√2)x+1))=  =((√2)/2)(arctan ((√2)x−1) +arctan ((√2)x+1))+C

othermethod:x2+1x4+1dx==12dxx22x+1+12dxx2+2x+1==22(arctan(2x1)+arctan(2x+1))+C

Commented by john santu last updated on 29/Mar/20

ostrogradetski?

ostrogradetski?

Commented by MJS last updated on 29/Mar/20

no. just decomposing

no.justdecomposing

Terms of Service

Privacy Policy

Contact: info@tinkutara.com