Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 86598 by Rio Michael last updated on 29/Mar/20

 write out the general summation formula for   the maclaurin series expansion for  (1/2) (cos x + cosh x)

writeoutthegeneralsummationformulaforthemaclaurinseriesexpansionfor12(cosx+coshx)

Commented by mathmax by abdo last updated on 31/Mar/20

cosx =Σ_(n=0) ^∞  (((−1)^n )/((2n)!))x^(2n)    and ch(x)=((e^x +e^(−x) )/2)  =(1/2)(Σ_(n=0) ^∞  (x^n /(n!)) +Σ_(n=0) ^∞  (((−1)^n )/(n!))x^n )  =(1/2)Σ_(n=0) ^∞ (1/(n!)){1+(−1)^n }x^n  =Σ_(n=0) ^∞  ((x^(2n)  ⇒)/((2n)!))  (1/2)(cosx +ch(x)) =(1/2){ Σ_(n=0) ^∞   (((−1)^n )/((2n)!))x^(2n)  +Σ_(n=0) ^∞  (1/((2n)!))x^(2n) }  =(1/2)Σ_(n=0) ^∞ ((1+(−1)^n )/((2n)!))x^(2n)  =Σ_(n=0) ^∞   (x^(4n) /((4n)!))

cosx=n=0(1)n(2n)!x2nandch(x)=ex+ex2=12(n=0xnn!+n=0(1)nn!xn)=12n=01n!{1+(1)n}xn=n=0x2n(2n)!12(cosx+ch(x))=12{n=0(1)n(2n)!x2n+n=01(2n)!x2n}=12n=01+(1)n(2n)!x2n=n=0x4n(4n)!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com