Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 86613 by Ar Brandon last updated on 29/Mar/20

∫_0 ^(1/2) ∫_0 ^(π/2) (1/(ycos(x)+1))dxdy

0120π21ycos(x)+1dxdy

Commented by abdomathmax last updated on 29/Mar/20

∫_0 ^(π/2)  (dx/(y cosx+1)) =_(tan((x/2))=t)    ∫_0 ^1   ((2dt)/((1+t^2 )(y((1−t^2 )/(1+t^2 ))+1)))  =2∫_0 ^1  (dt/(y−yt^2  +1+t^2 )) =2∫_0 ^1   (dy/((1−y)t^2 +1+y))  =(2/((1−y)))∫_0 ^1  (dy/(t^2  +((1+y)/(1−y))))  =_(t =(√((1+y)/(1−y)))u)     (2/((1−y)))×((1−y)/(1+y))  ∫_0 ^(√((1−y)/(1+y)))     (1/(1+u^2 ))×(√((1+y)/(1−y)))du  = (2/(√(1−y^2 ))) arctan((√((1−y)/(1+y)))) ⇒  ∫_0 ^(1/2)  ∫_0 ^(π/2)   ((dxdy)/(ycosx +1)) =2 ∫_0 ^(1/2) (1/(√(1−y^2 ))) arctan((√((1−y)/(1+y))))dy  ...be continued...

0π2dxycosx+1=tan(x2)=t012dt(1+t2)(y1t21+t2+1)=201dtyyt2+1+t2=201dy(1y)t2+1+y=2(1y)01dyt2+1+y1y=t=1+y1yu2(1y)×1y1+y01y1+y11+u2×1+y1ydu=21y2arctan(1y1+y)0120π2dxdyycosx+1=201211y2arctan(1y1+y)dy...becontinued...

Commented by mind is power last updated on 30/Mar/20

y=cos(2θ)  aarctan((√((1−y)/(1+y))))=arctan(tan(θ))=θ

y=cos(2θ)aarctan(1y1+y)=arctan(tan(θ))=θ

Commented by mathmax by abdo last updated on 30/Mar/20

changement y=cosθ give   ∫_0 ^(1/2)   (1/(√(1−y^2 )))arctan((√((1−y)/(1+y))))dy =∫_(π/2) ^(π/3)  (1/(sinθ)) arctan((√((2sin^2 ((θ/2)))/(2cos^2 ((θ/2))))))(−sinθ)dθ  = ∫_(π/3) ^(π/2)  arctan(tan((θ/2))) dθ =(1/2) ∫_(π/3) ^(π/2) θ dθ =(1/2)[(θ^2 /2)]_(π/3) ^(π/2)   =(1/4)( (π^2 /4)−(π^2 /9)) =(1/4)(((9π^2 −4π^2 )/(36))) =((5π^2 )/(144))

changementy=cosθgive01211y2arctan(1y1+y)dy=π2π31sinθarctan(2sin2(θ2)2cos2(θ2))(sinθ)dθ=π3π2arctan(tan(θ2))dθ=12π3π2θdθ=12[θ22]π3π2=14(π24π29)=14(9π24π236)=5π2144

Commented by mathmax by abdo last updated on 30/Mar/20

thank you sir mind..

thankyousirmind..

Commented by Ar Brandon last updated on 30/Mar/20

great  job

greatjob

Commented by abdomathmax last updated on 30/Mar/20

you are welcome sir.

youarewelcomesir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com