Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 86646 by Ar Brandon last updated on 30/Mar/20

∫_0 ^1 ((ln(1+x))/(x^2 +1))dx

01ln(1+x)x2+1dx

Commented by mathmax by abdo last updated on 30/Mar/20

I=∫_0 ^1  ((ln(1+x))/(1+x^2 ))dx cha7gement x=tant give  I =∫_0 ^(π/4)  ((ln(1+tan(t)))/(1+tan^2 t))(1+tan^2 t)dt  =∫_0 ^(π/4) ln(1+tant)dt   =_(t=(π/4)−u)  ∫_0 ^(π/4) ln(1+tan((π/4)−u))du  =∫_0 ^(π/4) ln(1+((1−tanu)/(1+tanu)))du =∫_0 ^(π/4) ln((2/(1+tanu)))du  =(π/4)ln(2)−∫_0 ^(π/4)  ln(1+tanu)du ⇒  2I =(π/4)ln(2) ⇒I =(π/8)ln(2)

I=01ln(1+x)1+x2dxcha7gementx=tantgiveI=0π4ln(1+tan(t))1+tan2t(1+tan2t)dt=0π4ln(1+tant)dt=t=π4u0π4ln(1+tan(π4u))du=0π4ln(1+1tanu1+tanu)du=0π4ln(21+tanu)du=π4ln(2)0π4ln(1+tanu)du2I=π4ln(2)I=π8ln(2)

Commented by Ar Brandon last updated on 30/Mar/20

cool!!

cool!!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com