All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 86646 by Ar Brandon last updated on 30/Mar/20
∫01ln(1+x)x2+1dx
Commented by mathmax by abdo last updated on 30/Mar/20
I=∫01ln(1+x)1+x2dxcha7gementx=tantgiveI=∫0π4ln(1+tan(t))1+tan2t(1+tan2t)dt=∫0π4ln(1+tant)dt=t=π4−u∫0π4ln(1+tan(π4−u))du=∫0π4ln(1+1−tanu1+tanu)du=∫0π4ln(21+tanu)du=π4ln(2)−∫0π4ln(1+tanu)du⇒2I=π4ln(2)⇒I=π8ln(2)
Commented by Ar Brandon last updated on 30/Mar/20
cool!!
Terms of Service
Privacy Policy
Contact: info@tinkutara.com