Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 86728 by M±th+et£s last updated on 30/Mar/20

∫_0 ^∞ ln(1+(b^2 /x^2 )) dx

0ln(1+b2x2)dx

Commented by mathmax by abdo last updated on 30/Mar/20

let f(a) =∫_0 ^∞  ln(1+(a/x^2 ))dx  with a>0  f^′ (a) =∫_0 ^∞   (1/(x^2 (1+(a/x^2 ))))dx =∫_0 ^∞  (dx/(x^2  +a)) =_(x=(√a)u)    ∫_0 ^∞   (((√a)du)/(a(1+u^2 )))  =(1/(√a))×(π/2) =(π/(2(√a))) ⇒f(a) =π(√a) +C  f(0)=0 =C ⇒f(a) =π(√a) ⇒∫_0 ^∞  ln(1+(b^2 /x^2 ))dx =f(b^2 ) =π∣b∣

letf(a)=0ln(1+ax2)dxwitha>0f(a)=01x2(1+ax2)dx=0dxx2+a=x=au0adua(1+u2)=1a×π2=π2af(a)=πa+Cf(0)=0=Cf(a)=πa0ln(1+b2x2)dx=f(b2)=πb

Terms of Service

Privacy Policy

Contact: info@tinkutara.com