Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 86786 by M±th+et£s last updated on 31/Mar/20

show that  Σ_(n=2) ^∞ (1/(n^2 (1−n^2 )^2 ))=0.2999

showthatn=21n2(1n2)2=0.2999

Commented by Prithwish Sen 1 last updated on 31/Mar/20

I got 0.0299

Igot0.0299

Commented by Prithwish Sen 1 last updated on 31/Mar/20

the series is  (3/2)Σ_1 ^∞ (1/n^2 ) −((39)/(16)) = (𝛑^2 /4) −((39)/(16)) = 0.0299011  please check.

theseriesis3211n23916=π243916=0.0299011pleasecheck.

Commented by mathmax by abdo last updated on 31/Mar/20

let decompose F(x) =(1/(x^2 (x^2 −1)^2 )) =(1/(x^2 (x−1)^2 (x+1)^2 ))  F(x) =(a/x)+(b/x^2 ) +(c/(x−1)) +(d/((x−1)^2 )) +(e/(x+1)) +(f/((x+1)^2 ))  F(−x)=F(x) ⇒−(a/x) +(b/x^2 )−(c/(x+1)) +(d/((x+1)^2 ))−(e/(x−1)) +(f/((x−1)^2 ))  =F(x) ⇒ a=0 and e=−c  and f =d ⇒  f(x)=(b/x^2 ) +(c/(x−1)) +(d/((x−1)^2 ))−(c/(x+1)) +(d/((x+1)^2 ))  b =1  and d =(1/4) ⇒F(x)=(1/x^2 ) +(c/(x−1)) +(1/(4(x−1)^2 ))−(c/(x+1)) +(1/(4(x+1)^2 ))  F(2) =(1/(36)) =(1/4) +c +(1/4)−(c/3) +(1/(36)) ⇒(1/2) +(2/3)c =0 ⇒3+4c =0 ⇒  c=−(3/4) ⇒F(x) =(1/x^2 )−(3/(4(x−1))) +(1/(4(x−1)^2 )) +(3/(4(x+1)))+(1/(4(x+1)^2 ))  S_n =Σ_(k=2) ^n  (1/(k^2 (k^2 −1)^2 ))  ⇒  S_n =Σ_(k=2) ^n  (1/k^2 )−(3/4)Σ_(k=2) ^n  (1/(k−1)) +(1/4)Σ_(k=2) ^n  (1/((k−1)^2 )) +(3/4)Σ_(k=2) ^n (1/(k+1))  +(1/4)Σ_(k=2) ^n  (1/((k+1)^2 ))  Σ_(k.=2) ^n  (1/k^2 ) =ξ_n (2)−1 →(π^2 /6)−1  Σ_(k=2) ^n  (1/(k−1)) =Σ_(k=1) ^(n−1)  (1/k) =H_(n−1) =ln(n−1)+γ +o((1/(n−1)))  Σ_(k=2) ^n  (1/((k−1)^2 )) =Σ_(k=1) ^(n−1)  (1/k^2 ) =ξ_(n−1) (2) →(π^2 /6)  Σ_(k=2) ^n  (1/(k+1)) =Σ_(k=3) ^(n+1)  (1/k) =H_(n+1) −(3/2) =ln(n+1)+γ +o((1/(n+1)))−(3/2)  Σ_(k=2) ^n  (1/((k+1)^2 )) =Σ_(k=3) ^(n+1)  (1/k^2 ) =ξ_(n+1) (2)−(5/4)→(π^2 /6)−(5/4) ⇒  S_n  =ξ_n (2)−1−(3/4)H_(n−1) +(1/4)ξ_(n−1) (2)+(3/4) H_(n+1) −(9/8) +(1/4)ξ_(n+1) (2)−(5/(16))  ⇒lim_(n→+∞)  S_n =(π^2 /6)−1 +(1/4)(π^2 /6)−(9/8)+(1/4)(π^2 /6)−(5/(16))  =(π^2 /6)+(π^2 /(12)) −((16+18+5)/(16)) =(π^2 /4)−((39)/(16))

letdecomposeF(x)=1x2(x21)2=1x2(x1)2(x+1)2F(x)=ax+bx2+cx1+d(x1)2+ex+1+f(x+1)2F(x)=F(x)ax+bx2cx+1+d(x+1)2ex1+f(x1)2=F(x)a=0ande=candf=df(x)=bx2+cx1+d(x1)2cx+1+d(x+1)2b=1andd=14F(x)=1x2+cx1+14(x1)2cx+1+14(x+1)2F(2)=136=14+c+14c3+13612+23c=03+4c=0c=34F(x)=1x234(x1)+14(x1)2+34(x+1)+14(x+1)2Sn=k=2n1k2(k21)2Sn=k=2n1k234k=2n1k1+14k=2n1(k1)2+34k=2n1k+1+14k=2n1(k+1)2k.=2n1k2=ξn(2)1π261k=2n1k1=k=1n11k=Hn1=ln(n1)+γ+o(1n1)k=2n1(k1)2=k=1n11k2=ξn1(2)π26k=2n1k+1=k=3n+11k=Hn+132=ln(n+1)+γ+o(1n+1)32k=2n1(k+1)2=k=3n+11k2=ξn+1(2)54π2654Sn=ξn(2)134Hn1+14ξn1(2)+34Hn+198+14ξn+1(2)516limn+Sn=π261+14π2698+14π26516=π26+π21216+18+516=π243916

Commented by M±th+et£s last updated on 31/Mar/20

yes sir its typo

yessiritstypo

Commented by M±th+et£s last updated on 31/Mar/20

thank you

thankyou

Commented by mathmax by abdo last updated on 01/Apr/20

you are[welcome

youare[welcome

Terms of Service

Privacy Policy

Contact: info@tinkutara.com