Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 86955 by abdomathmax last updated on 01/Apr/20

find ∫  ((arctan(x))/x)dx

findarctan(x)xdx

Commented by Ar Brandon last updated on 01/Apr/20

Let f(a)=∫((arctan(ax))/x)dx  ⇒f ′ (a)=∫(x/x)∙(1/(1+(ax)^2 ))dx=∫(1/(1+(ax)^2 ))dx  ⇒f ′  (a) = (1/a)∙arctan(ax)+C  .....

Letf(a)=arctan(ax)xdxf(a)=xx11+(ax)2dx=11+(ax)2dxf(a)=1aarctan(ax)+C.....

Answered by redmiiuser last updated on 01/Apr/20

arctan x=x−(x^3 /3)+(x^5 /5)−(x^7 /7)+...  =Σ_(n=0) ^∞ (((−1)^n .x^(2n+1) )/(2n+1))  ∫Σ_(n=0) ^∞ (((−1)^n .x^(2n) .dx)/(2n+1))  =Σ_(n=0) ^∞ (((−1)^n .x^(2n+1) )/((2n+1)^2 ))

arctanx=xx33+x55x77+...=n=0(1)n.x2n+12n+1n=0(1)n.x2n.dx2n+1=n=0(1)n.x2n+1(2n+1)2

Commented by redmiiuser last updated on 01/Apr/20

Mr.abdomathmax pls  check my answer and  comment the appropriate.

Mr.abdomathmaxplscheckmyanswerandcommenttheappropriate.

Commented by mathmax by abdo last updated on 01/Apr/20

your answer is correct  because the radius of arctan(x)is +∞  (integr serie)

youransweriscorrectbecausetheradiusofarctan(x)is+(integrserie)

Answered by mind is power last updated on 02/Apr/20

=ln(x)arctan(x)−∫((ln(x))/(1+x^2 ))dx  =ln(x)arctan(x)−∫((ln(x)dx)/((x+i)(x−i)))  =ln(x)arctan(x)−(1/(2i))∫{((ln(x))/(x−i))−((ln(x))/(x+i))}dx  =arctan(x)ln(x)−(1/(2i))∫((ln(x)dx)/(x−i))+(1/(2i))∫((ln(x))/(x+i))dx  ∫((ln(x))/(x+a))dx=∫((ln(y−a))/y)dy=∫((ln(−a)+ln(1−(y/a)))/y)dy  =ln(−a)ln(x+a)−Li_2 ((x/a)+1)  =arctan(x)ln(x)−(1/(2i))ln(i)ln(x−i)+(1/(2i))Li_2 (ix+1)+(1/(2i))ln(−i)ln(x+i)  −(1/(2i))Li_2 (−ix+1)+c

=ln(x)arctan(x)ln(x)1+x2dx=ln(x)arctan(x)ln(x)dx(x+i)(xi)=ln(x)arctan(x)12i{ln(x)xiln(x)x+i}dx=arctan(x)ln(x)12iln(x)dxxi+12iln(x)x+idxln(x)x+adx=ln(ya)ydy=ln(a)+ln(1ya)ydy=ln(a)ln(x+a)Li2(xa+1)=arctan(x)ln(x)12iln(i)ln(xi)+12iLi2(ix+1)+12iln(i)ln(x+i)12iLi2(ix+1)+c

Terms of Service

Privacy Policy

Contact: info@tinkutara.com