All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 86956 by abdomathmax last updated on 01/Apr/20
find∫(1−1x2)arctan(2x)dx
Commented by Ar Brandon last updated on 01/Apr/20
Letu=arctan(2x)⇒du=2⋅11+(2x)2dxdv=(1−1x2)dx⇒v=(x+1x)I=(x+1x2)arctan(2x)−2∫(x+1x)⋅(11+4x2)dx=(x+1x2)arctan(2x)−2∫x2+1x⋅11+4x2dx=(x+1x2)arctan(2x)−2∫x2+1x(1+4x2)dxx2+1x(1+4x2)=Ax+Bx+C4x2+1=A(4x2+1)+(Bx+C)xx(4x2+1)=(4A+B)x2+Cx+Ax(4x2+1)4A+B=1C=0A=1⇒B=−3∫x2x(1+4x2)dx=∫(1x−3x1+4x2)=∫1xdx−38∫8x1+4x2dx=lnx−38ln(1+4x2)+Constant∫(1−1x2)arctan(2x)dx=(x+1x)arctan(2x)−2lnx+34ln(1+4x2)+constant
Commented by mathmax by abdo last updated on 01/Apr/20
thankyousir
��
Terms of Service
Privacy Policy
Contact: info@tinkutara.com