All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 86957 by abdomathmax last updated on 01/Apr/20
find∫arctan(1−u1+u)du
Commented by Ar Brandon last updated on 01/Apr/20
I=∫arctan(1−x1+x)dxLetu=arctan(1−x1+x)⇔u=arctan(t)witht=1−x1+x⇒dudx=dudt×dtdududt=11+t2dtdu=−(1+x)−(1−x)(1+x)2=−2(1+x)2⇒dudx=11+(1−x1+x)2×−2(1+x)2=(1+x)2(1+x)2+(1−x)2×−2(1+x)2=−2(1+2x+x2)+(1−2x+x2)⇒dudx=−11+x2⇒du=−11+x2dxLetalsodv=dx⇒v=xThusI=xarctan(1−x1+x)+∫x1+x2dx=xarctan(1−x1+x)+12ln(1+x2)+C∫arctan(1−u1+u)du=uarctan(1−u1+u)+12ln(1+u2)+CC∈R
Commented by mathmax by abdo last updated on 01/Apr/20
I=∫arctan(1−u1+u)dubypartsf′=1andv=arctan(1−u1+u)⇒v′=(1−u1+u)′1+(1−u1+u)2=−(1+u)−(1−u)(1+u)2×(1+u)2(1+u)2+(1−u)2=−2u2+2u+1+u2−2u+1=−22u2+2=−1u2+1⇒I=uarctan(1−u1+u)+∫uu2+1du+c=uarctan(1−u1+u)+12ln(1+u2)+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com