Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 86957 by abdomathmax last updated on 01/Apr/20

find ∫  arctan(((1−u)/(1+u)))du

findarctan(1u1+u)du

Commented by Ar Brandon last updated on 01/Apr/20

I=∫arctan(((1−x)/(1+x)))dx  Let u=arctan(((1−x)/(1+x))) ⇔ u=arctan(t)  with  t=((1−x)/(1+x))  ⇒(du/dx)=(du/dt)×(dt/du)  (du/dt)=(1/(1+t^2 ))         (dt/du)=((−(1+x)−(1−x))/((1+x)^2 ))=((−2)/((1+x)^2 ))  ⇒(du/dx)=(1/(1+(((1−x)/(1+x)))^2 ))×((−2)/((1+x)^2 ))=(((1+x)^2 )/((1+x)^2 +(1−x)^2 ))×((−2)/((1+x)^2 ))=((−2)/((1+2x+x^2 )+(1−2x+x^2 )))  ⇒(du/dx)=−(1/(1+x^2 ))⇒du=−(1/(1+x^2 ))dx    Let also   dv=dx⇒v=x    Thus  I=x arctan(((1−x)/(1+x)))+∫(x/(1+x^2 ))dx                   =x arctan(((1−x)/(1+x )))+(1/2)ln(1+x^2 )+C  ∫arctan(((1−u)/(1+u)))du=u arctan(((1−u)/(1+u)))+(1/2)ln(1+u^2 )+C  C∈R

I=arctan(1x1+x)dxLetu=arctan(1x1+x)u=arctan(t)witht=1x1+xdudx=dudt×dtdududt=11+t2dtdu=(1+x)(1x)(1+x)2=2(1+x)2dudx=11+(1x1+x)2×2(1+x)2=(1+x)2(1+x)2+(1x)2×2(1+x)2=2(1+2x+x2)+(12x+x2)dudx=11+x2du=11+x2dxLetalsodv=dxv=xThusI=xarctan(1x1+x)+x1+x2dx=xarctan(1x1+x)+12ln(1+x2)+Carctan(1u1+u)du=uarctan(1u1+u)+12ln(1+u2)+CCR

Commented by mathmax by abdo last updated on 01/Apr/20

I =∫ arctan(((1−u)/(1+u)))du    by parts f^′ =1 and v=arctan(((1−u)/(1+u))) ⇒  v^′ =(((((1−u)/(1+u)))^′ )/(1+(((1−u)/(1+u)))^2 ))  =((−(1+u)−(1−u))/((1+u)^2 ))×(((1+u)^2 )/((1+u)^2  +(1−u)^2 ))  =((−2)/(u^2 +2u+1 +u^2 −2u +1)) =((−2)/(2u^2 +2)) =−(1/(u^2  +1)) ⇒  I =u arctan(((1−u)/(1+u)))+∫ (u/(u^2  +1))du +c  =u arctan(((1−u)/(1+u)))+(1/2)ln(1+u^2 ) +C

I=arctan(1u1+u)dubypartsf=1andv=arctan(1u1+u)v=(1u1+u)1+(1u1+u)2=(1+u)(1u)(1+u)2×(1+u)2(1+u)2+(1u)2=2u2+2u+1+u22u+1=22u2+2=1u2+1I=uarctan(1u1+u)+uu2+1du+c=uarctan(1u1+u)+12ln(1+u2)+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com