Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 86983 by mathmax by abdo last updated on 01/Apr/20

1) calculate ∫  (dx/((x+1)^3 (x−2)^3 ))  2) decompose the fraction F(x)=(1/((x+1)^3 (x−2)^3 ))

1)calculatedx(x+1)3(x2)32)decomposethefractionF(x)=1(x+1)3(x2)3

Commented by hknkrc46 last updated on 01/Apr/20

(1/((x+1)^3 (x−2)^3 )) =(1/(27))∙(([(x+1)−(x−2)]^3 )/((x+1)^3 (x−2)^3 ))  =(1/(27))[(((x+1)^3 −(x−2)^3 −3(x+1)(x−2)[(x+1)−(x−2)])/((x+1)^3 (x−2)^3 ))]  =(1/(27))[(1/((x−2)^3 ))−(1/((x+1)^3 ))−(9/((x+1)^2 (x−2)^2 ))]  =(1/(27))[(1/((x−2)^3 ))−(1/((x+1)^3 ))−(([(x+1)−(x−2)]^2 )/((x+1)^2 (x−2)^2 ))]  =(1/(27))[(1/((x−2)^3 ))−(1/((x+1)^3 ))−(((x+1)^2 +(x−2)^2 −2(x+1)(x−2))/((x+1)^2 (x−2)^2 ))]  =(1/(27))[(1/((x−2)^3 ))−(1/((x+1)^3 ))−(1/((x−2)^2 ))−(1/((x+1)^2 ))+(2/((x+1)(x−2)))]  =(1/(27))[(1/((x−2)^3 ))−(1/((x+1)^3 ))−(1/((x−2)^2 ))−(1/((x+1)^2 ))+(2/3)∙(((x+1)−(x−2))/((x+1)(x−2)))]  =(1/(27))[(1/((x−2)^3 ))−(1/((x+1)^3 ))−(1/((x−2)^2 ))−(1/((x+1)^2 ))+(2/3)∙((1/(x−2))−(1/(x+1)))]  =(1/(27))[(1/((x−2)^3 ))−(1/((x+1)^3 ))−(1/((x−2)^2 ))−(1/((x+1)^2 ))]+(2/(81))∙((1/(x−2))−(1/(x+1)))  ∫  (dx/((x+1)^3 (x−2)^3 ))=(1/(27))[(((x−2)^(−2) )/(−2))+(((x+1)^(−2) )/2)+(x−2)^(−1) +(x+1)^(−1) ]+(2/(81))ln(((x−2)/(x+1)))+c

1(x+1)3(x2)3=127[(x+1)(x2)]3(x+1)3(x2)3=127[(x+1)3(x2)33(x+1)(x2)[(x+1)(x2)](x+1)3(x2)3]=127[1(x2)31(x+1)39(x+1)2(x2)2]=127[1(x2)31(x+1)3[(x+1)(x2)]2(x+1)2(x2)2]=127[1(x2)31(x+1)3(x+1)2+(x2)22(x+1)(x2)(x+1)2(x2)2]=127[1(x2)31(x+1)31(x2)21(x+1)2+2(x+1)(x2)]=127[1(x2)31(x+1)31(x2)21(x+1)2+23(x+1)(x2)(x+1)(x2)]=127[1(x2)31(x+1)31(x2)21(x+1)2+23(1x21x+1)]=127[1(x2)31(x+1)31(x2)21(x+1)2]+281(1x21x+1)dx(x+1)3(x2)3=127[(x2)22+(x+1)22+(x2)1+(x+1)1]+281ln(x2x+1)+c

Commented by mathmax by abdo last updated on 01/Apr/20

thank you sir its a eazy way...

thankyousiritsaeazyway...

Commented by mathmax by abdo last updated on 01/Apr/20

1) I =∫  (dx/((x+1)^3 (x−2)^3 )) ⇒ I =∫   (dx/((((x+1)/(x−2)))^3 (x−2)^6 )) changement  ((x+1)/(x−2)) =t give x+1 =tx−2t ⇒(1−t)x =−1−2t ⇒x =((2t+1)/(t−1)) ⇒  (dx/dt) =((2(t−1)−(2t+1))/((t−1)^2 )) =((−3)/((t−1)^2 )) also x−2 =((2t+1)/(t−1))−2=((2t+1−2t+2)/(t−1))  =(3/(t−1)) ⇒ I = ∫  ((−3dt)/((t−1)^2 t^3 ((3/(t−1)))^6 )) =−(1/3^5 ) ∫  (((t−1)^4  dt)/t^3 )  =−(1/3^5 )∫  ((Σ_(k=0) ^4  C_4 ^k  t^k (−1)^(4−k) )/t^3 )dt =−(1/3^5 ) Σ_(k=0) ^4  (−1)^k  C_4 ^k ∫ t^(k−3)  dt  =−(1/3^5 )Σ_(k=0 and k≠2) ^4  (−1)^k  C_4 ^k  (1/(k−2))t^(k−2)    −(1/3^5 ) C_4 ^2  ln∣t∣ +C  =−(1/3^5 ) Σ_(k=0 and k≠2) ^4  (((−1)^k  C_4 ^k )/(k−2)) (((x+1)/(x−2)))^(k−2)  −(1/3^5 ) C_4 ^2  ln∣((x+1)/(x−2))∣ +C  −3^5 I =(C_4 ^0 /(−2))(((x+1)/(x−2)))^(−2) +(C_4 ^1 /1)(((x+1)/(x−2)))^(−1) −C_4 ^3  (((x+1)/(x−2))) +(C_4 ^4 /2)(((x+1)/(x−2)))^2   + C_4 ^2 ln∣((x+1)/(x−2))∣ +C

1)I=dx(x+1)3(x2)3I=dx(x+1x2)3(x2)6changementx+1x2=tgivex+1=tx2t(1t)x=12tx=2t+1t1dxdt=2(t1)(2t+1)(t1)2=3(t1)2alsox2=2t+1t12=2t+12t+2t1=3t1I=3dt(t1)2t3(3t1)6=135(t1)4dtt3=135k=04C4ktk(1)4kt3dt=135k=04(1)kC4ktk3dt=135k=0andk24(1)kC4k1k2tk2135C42lnt+C=135k=0andk24(1)kC4kk2(x+1x2)k2135C42lnx+1x2+C35I=C402(x+1x2)2+C411(x+1x2)1C43(x+1x2)+C442(x+1x2)2+C42lnx+1x2+C

Commented by mathmax by abdo last updated on 01/Apr/20

2) ∫ F(x)dx is known we use F(x) =(d/dx)(∫ F(x)dx)

2)F(x)dxisknownweuseF(x)=ddx(F(x)dx)

Answered by mind is power last updated on 02/Apr/20

F(a,b)∫(dx/((x+a)(x+b)))=(1/(b−a))ln(((x+a)/(x+b)))+c  ∫(dx/((x+1)^3 (x−2)^3 ))=(∂^3 F/(4∂^2 a.∂^2 b))∣_(a=1,b.−2)

F(a,b)dx(x+a)(x+b)=1baln(x+ax+b)+cdx(x+1)3(x2)3=3F42a.2ba=1,b.2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com