Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 87168 by mathocean1 last updated on 03/Apr/20

Calculate these limits:  Please sirs detail

$${Calculate}\:{these}\:{limits}: \\ $$$${Please}\:{sirs}\:{detail}\: \\ $$

Commented by john santu last updated on 03/Apr/20

a) change x ⇒−t   lim_(t→∞)  ((−3t−1−cos t)/(−t))= 3  c) lim_(x→4)  ((1/(√(2x+1)))/(1−(3/(2(√(3x+4)))))) = ((1/3)/(1−(3/8))) = ((1/3)/(5/8)) = (8/(15))  d) lim_(x→∞)  ((x(√(3+(1/x^2 ) )) −2x)/x) = (√3) −2

$$\left.\mathrm{a}\right)\:\mathrm{change}\:\mathrm{x}\:\Rightarrow−\mathrm{t}\: \\ $$$$\underset{\mathrm{t}\rightarrow\infty} {\mathrm{lim}}\:\frac{−\mathrm{3t}−\mathrm{1}−\mathrm{cos}\:\mathrm{t}}{−\mathrm{t}}=\:\mathrm{3} \\ $$$$\left.\mathrm{c}\right)\:\underset{{x}\rightarrow\mathrm{4}} {\mathrm{lim}}\:\frac{\frac{\mathrm{1}}{\sqrt{\mathrm{2x}+\mathrm{1}}}}{\mathrm{1}−\frac{\mathrm{3}}{\mathrm{2}\sqrt{\mathrm{3x}+\mathrm{4}}}}\:=\:\frac{\frac{\mathrm{1}}{\mathrm{3}}}{\mathrm{1}−\frac{\mathrm{3}}{\mathrm{8}}}\:=\:\frac{\frac{\mathrm{1}}{\mathrm{3}}}{\frac{\mathrm{5}}{\mathrm{8}}}\:=\:\frac{\mathrm{8}}{\mathrm{15}} \\ $$$$\left.\mathrm{d}\right)\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{x}\sqrt{\mathrm{3}+\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }\:}\:−\mathrm{2x}}{\mathrm{x}}\:=\:\sqrt{\mathrm{3}}\:−\mathrm{2} \\ $$

Commented by mathocean1 last updated on 03/Apr/20

Commented by john santu last updated on 03/Apr/20

lim_(n→∞)  or lim_(x→∞)

$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{or}\:\underset{{x}\rightarrow\infty} {\mathrm{lim}} \\ $$

Commented by mathocean1 last updated on 03/Apr/20

lim_(x→∞)

$${li}\underset{{x}\rightarrow\infty} {{m}} \\ $$

Commented by TANMAY PANACEA. last updated on 03/Apr/20

c)lim_(x→4)  (((√(2x+1)) −3)/(x−(√(3x+4)) ))  =lim_(x→4)  ((2x+1−9)/(x^2 −3x−4))×((x+(√(3x+4)))/((√(2x+1)) +3))  =lim_(x→4)  ((2(x−4))/((x−4)(x+1)))×((x+(√(3x+4)))/((√(2x+1)) +3))  =(2/5)×((4+4)/(3+3))=(2/5)×(4/3)=(8/(15))

$$\left.{c}\right)\underset{{x}\rightarrow\mathrm{4}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{2}{x}+\mathrm{1}}\:−\mathrm{3}}{{x}−\sqrt{\mathrm{3}{x}+\mathrm{4}}\:} \\ $$$$=\underset{{x}\rightarrow\mathrm{4}} {\mathrm{lim}}\:\frac{\mathrm{2}{x}+\mathrm{1}−\mathrm{9}}{{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{4}}×\frac{{x}+\sqrt{\mathrm{3}{x}+\mathrm{4}}}{\sqrt{\mathrm{2}{x}+\mathrm{1}}\:+\mathrm{3}} \\ $$$$=\underset{{x}\rightarrow\mathrm{4}} {\mathrm{lim}}\:\frac{\mathrm{2}\left({x}−\mathrm{4}\right)}{\left({x}−\mathrm{4}\right)\left({x}+\mathrm{1}\right)}×\frac{{x}+\sqrt{\mathrm{3}{x}+\mathrm{4}}}{\sqrt{\mathrm{2}{x}+\mathrm{1}}\:+\mathrm{3}} \\ $$$$=\frac{\mathrm{2}}{\mathrm{5}}×\frac{\mathrm{4}+\mathrm{4}}{\mathrm{3}+\mathrm{3}}=\frac{\mathrm{2}}{\mathrm{5}}×\frac{\mathrm{4}}{\mathrm{3}}=\frac{\mathrm{8}}{\mathrm{15}} \\ $$

Commented by TANMAY PANACEA. last updated on 03/Apr/20

d)lim_(x→∞)  (((√(3x^2 +1)) −2x)/x)  =lim_(x→∞)  ((x(√(3+(1/x^2 ))) −2x)/x)  =lim_(x→∞)  (((√(3+(1/x^2 ))) −2)/1)=(√3) −2

$$\left.{d}\right)\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{3}{x}^{\mathrm{2}} +\mathrm{1}}\:−\mathrm{2}{x}}{{x}} \\ $$$$=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{{x}\sqrt{\mathrm{3}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }}\:−\mathrm{2}{x}}{{x}} \\ $$$$=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{3}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }}\:−\mathrm{2}}{\mathrm{1}}=\sqrt{\mathrm{3}}\:−\mathrm{2} \\ $$

Commented by mathmax by abdo last updated on 03/Apr/20

a) we have        lim_(x→−∞)   ((3x+1−cosx)/x)  =lim_(x→−∞)    ((x(3+(1/x)−((cosx)/x)))/x) =lim_(x→−∞)    3+(1/x)−((cosx)/x) =3

$$\left.{a}\right)\:{we}\:{have}\:\:\:\:\:\:\:\:{lim}_{{x}\rightarrow−\infty} \:\:\frac{\mathrm{3}{x}+\mathrm{1}−{cosx}}{{x}} \\ $$$$={lim}_{{x}\rightarrow−\infty} \:\:\:\frac{{x}\left(\mathrm{3}+\frac{\mathrm{1}}{{x}}−\frac{{cosx}}{{x}}\right)}{{x}}\:={lim}_{{x}\rightarrow−\infty} \:\:\:\mathrm{3}+\frac{\mathrm{1}}{{x}}−\frac{{cosx}}{{x}}\:=\mathrm{3} \\ $$

Commented by mathmax by abdo last updated on 03/Apr/20

c) lim_(x→4)       (((√(2x+1))−3)/(x−(√(3x+4)))) =lim_(x→4)   ((2x+1−9)/((√(2x+1))+3))×((x+(√(3x+4)))/(x^2 −3x−4))  =lim_(x→4)     ((x+(√(3x+4)))/((√(2x+1))+3))×((2x−8)/((x^2 −3x−4))) =(4/3)lim_(x→4)    ((2(x−4))/((x−4)(x+1)))  =(4/3)lim_(x→4)    (2/(x+1)) =(4/3)×(2/5) =(8/(15))

$$\left.{c}\right)\:{lim}_{{x}\rightarrow\mathrm{4}} \:\:\:\:\:\:\frac{\sqrt{\mathrm{2}{x}+\mathrm{1}}−\mathrm{3}}{{x}−\sqrt{\mathrm{3}{x}+\mathrm{4}}}\:={lim}_{{x}\rightarrow\mathrm{4}} \:\:\frac{\mathrm{2}{x}+\mathrm{1}−\mathrm{9}}{\sqrt{\mathrm{2}{x}+\mathrm{1}}+\mathrm{3}}×\frac{{x}+\sqrt{\mathrm{3}{x}+\mathrm{4}}}{{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{4}} \\ $$$$={lim}_{{x}\rightarrow\mathrm{4}} \:\:\:\:\frac{{x}+\sqrt{\mathrm{3}{x}+\mathrm{4}}}{\sqrt{\mathrm{2}{x}+\mathrm{1}}+\mathrm{3}}×\frac{\mathrm{2}{x}−\mathrm{8}}{\left({x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{4}\right)}\:=\frac{\mathrm{4}}{\mathrm{3}}{lim}_{{x}\rightarrow\mathrm{4}} \:\:\:\frac{\mathrm{2}\left({x}−\mathrm{4}\right)}{\left({x}−\mathrm{4}\right)\left({x}+\mathrm{1}\right)} \\ $$$$=\frac{\mathrm{4}}{\mathrm{3}}{lim}_{{x}\rightarrow\mathrm{4}} \:\:\:\frac{\mathrm{2}}{{x}+\mathrm{1}}\:=\frac{\mathrm{4}}{\mathrm{3}}×\frac{\mathrm{2}}{\mathrm{5}}\:=\frac{\mathrm{8}}{\mathrm{15}} \\ $$

Commented by mathmax by abdo last updated on 03/Apr/20

d) f(x)=(((√(3x^2 +1))−2x)/x)  we have  for x>0  (√(3x^2 +1))=x(√3)(√(1+(1/(3x^2 ))))∼x(√3){1+(1/(6x^2 ))} ⇒f(x)∼((x(√3)+((√3)/(6x))−2x)/x)  =(((√3)+((√3)/(6x^2 ))−2)/1) →(√3)−2 ⇒lim_(x→+∞)   f(x)=(√3)−2

$$\left.{d}\right)\:{f}\left({x}\right)=\frac{\sqrt{\mathrm{3}{x}^{\mathrm{2}} +\mathrm{1}}−\mathrm{2}{x}}{{x}}\:\:{we}\:{have}\:\:{for}\:{x}>\mathrm{0} \\ $$$$\sqrt{\mathrm{3}{x}^{\mathrm{2}} +\mathrm{1}}={x}\sqrt{\mathrm{3}}\sqrt{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}{x}^{\mathrm{2}} }}\sim{x}\sqrt{\mathrm{3}}\left\{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{6}{x}^{\mathrm{2}} }\right\}\:\Rightarrow{f}\left({x}\right)\sim\frac{{x}\sqrt{\mathrm{3}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{6}{x}}−\mathrm{2}{x}}{{x}} \\ $$$$=\frac{\sqrt{\mathrm{3}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{6}{x}^{\mathrm{2}} }−\mathrm{2}}{\mathrm{1}}\:\rightarrow\sqrt{\mathrm{3}}−\mathrm{2}\:\Rightarrow{lim}_{{x}\rightarrow+\infty} \:\:{f}\left({x}\right)=\sqrt{\mathrm{3}}−\mathrm{2} \\ $$

Commented by mathmax by abdo last updated on 03/Apr/20

b) let f(x)=((x^2 +1)/(x[x]))  changement x=−t give  f(x)=((t^2  +1)/(−t[−t]))    (x→−∞ ⇒t→ +∞)  and we have  [−t] =α−[t]  with α =0 or −1 ⇒[−t]∼−[t]∼−t ⇒  lim_(x→−∞)   f(x) =lim_(t→+∞)    −((t^2 +1)/(t(−t))) =lim_(t→+∞)   ((t^2  +1)/t^2 ) =1

$$\left.{b}\right)\:{let}\:{f}\left({x}\right)=\frac{{x}^{\mathrm{2}} +\mathrm{1}}{{x}\left[{x}\right]}\:\:{changement}\:{x}=−{t}\:{give} \\ $$$${f}\left({x}\right)=\frac{{t}^{\mathrm{2}} \:+\mathrm{1}}{−{t}\left[−{t}\right]}\:\:\:\:\left({x}\rightarrow−\infty\:\Rightarrow{t}\rightarrow\:+\infty\right)\:\:{and}\:{we}\:{have} \\ $$$$\left[−{t}\right]\:=\alpha−\left[{t}\right]\:\:{with}\:\alpha\:=\mathrm{0}\:{or}\:−\mathrm{1}\:\Rightarrow\left[−{t}\right]\sim−\left[{t}\right]\sim−{t}\:\Rightarrow \\ $$$${lim}_{{x}\rightarrow−\infty} \:\:{f}\left({x}\right)\:={lim}_{{t}\rightarrow+\infty} \:\:\:−\frac{{t}^{\mathrm{2}} +\mathrm{1}}{{t}\left(−{t}\right)}\:={lim}_{{t}\rightarrow+\infty} \:\:\frac{{t}^{\mathrm{2}} \:+\mathrm{1}}{{t}^{\mathrm{2}} }\:=\mathrm{1} \\ $$$$ \\ $$

Commented by john santu last updated on 03/Apr/20

b) what define E(x)?

$$\left.\mathrm{b}\right)\:\mathrm{what}\:\mathrm{define}\:\mathrm{E}\left(\mathrm{x}\right)? \\ $$

Commented by john santu last updated on 03/Apr/20

why E(x)= [ x ] ?   E(x) = μ ?

$$\mathrm{why}\:\mathrm{E}\left(\mathrm{x}\right)=\:\left[\:\mathrm{x}\:\right]\:?\: \\ $$$$\mathrm{E}\left(\mathrm{x}\right)\:=\:\mu\:?\: \\ $$

Commented by mathmax by abdo last updated on 03/Apr/20

E(x)=x  at ∞

$${E}\left({x}\right)={x}\:\:{at}\:\infty \\ $$

Commented by mathmax by abdo last updated on 03/Apr/20

x =[x] +r  with 0≤r<1 ⇒(x/([x])) =1+(r/([x])) ⇒(x/([x])) ∼ 1  (x→+∞)

$${x}\:=\left[{x}\right]\:+{r}\:\:{with}\:\mathrm{0}\leqslant{r}<\mathrm{1}\:\Rightarrow\frac{{x}}{\left[{x}\right]}\:=\mathrm{1}+\frac{{r}}{\left[{x}\right]}\:\Rightarrow\frac{{x}}{\left[{x}\right]}\:\sim\:\mathrm{1}\:\:\left({x}\rightarrow+\infty\right) \\ $$

Commented by mathocean1 last updated on 03/Apr/20

E(x)≤x≤E(x)+1

$$\mathrm{E}\left(\mathrm{x}\right)\leqslant\mathrm{x}\leqslant\mathrm{E}\left(\mathrm{x}\right)+\mathrm{1} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com