Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 8721 by swapnil last updated on 24/Oct/16

If z∈C satisfies  ∣z^3 +z^(−3) ∣≤2  then maximum possible value of∣z+z^(−1) ∣is?

$$\mathrm{If}\:\mathrm{z}\in\mathrm{C}\:\mathrm{satisfies} \\ $$$$\mid\mathrm{z}^{\mathrm{3}} +\mathrm{z}^{−\mathrm{3}} \mid\leqslant\mathrm{2} \\ $$$${t}\mathrm{hen}\:\mathrm{maximum}\:\mathrm{possible}\:\mathrm{value}\:\mathrm{of}\mid\mathrm{z}+\mathrm{z}^{−\mathrm{1}} \mid\mathrm{is}? \\ $$

Commented by 123456 last updated on 24/Oct/16

∣z^3 +z^(−3) ∣≤2  z=e^(θι)   z^3 +z^(−3) =e^(3θι) +e^(−3θι) =2cos(3θ)⇒∣cos (3θ)∣≤1  z+z^(−1) =e^(θι) +e^(−θι) =2cos θ  cosh t=((e^t +e^(−t) )/2)  sinh t=((e^t −e^(−t) )/2)  e^(θι) =cos θ+ι sin θ   cosh (tι)=cos t  sinh (tι)=ιsin t  cos^2 θ+sin^2 θ=1  cosh^2 t−sinh^2 t=1

$$\mid{z}^{\mathrm{3}} +{z}^{−\mathrm{3}} \mid\leqslant\mathrm{2} \\ $$$${z}={e}^{\theta\iota} \\ $$$${z}^{\mathrm{3}} +{z}^{−\mathrm{3}} ={e}^{\mathrm{3}\theta\iota} +{e}^{−\mathrm{3}\theta\iota} =\mathrm{2cos}\left(\mathrm{3}\theta\right)\Rightarrow\mid\mathrm{cos}\:\left(\mathrm{3}\theta\right)\mid\leqslant\mathrm{1} \\ $$$${z}+{z}^{−\mathrm{1}} ={e}^{\theta\iota} +{e}^{−\theta\iota} =\mathrm{2cos}\:\theta \\ $$$$\mathrm{cosh}\:{t}=\frac{{e}^{{t}} +{e}^{−{t}} }{\mathrm{2}} \\ $$$$\mathrm{sinh}\:{t}=\frac{{e}^{{t}} −{e}^{−{t}} }{\mathrm{2}} \\ $$$${e}^{\theta\iota} =\mathrm{cos}\:\theta+\iota\:\mathrm{sin}\:\theta\: \\ $$$$\mathrm{cosh}\:\left({t}\iota\right)=\mathrm{cos}\:{t} \\ $$$$\mathrm{sinh}\:\left({t}\iota\right)=\iota\mathrm{sin}\:{t} \\ $$$$\mathrm{cos}^{\mathrm{2}} \theta+\mathrm{sin}^{\mathrm{2}} \theta=\mathrm{1} \\ $$$$\mathrm{cosh}^{\mathrm{2}} {t}−\mathrm{sinh}^{\mathrm{2}} {t}=\mathrm{1} \\ $$

Commented by prakash jain last updated on 24/Oct/16

z=re^(ιθ)   ∣z^3 +z^(−3) ∣=2r^3 ∣cos 3θ∣  ∣z+z^(−1) ∣=2r∣cos θ∣  θ=(π/6),3θ=(π/2)  ∣z^3 +z^(−3) ∣=0  ∣z+z^(−1) ∣=2rcos (π/6)=r(√3)  You can choose r.  ∣z^3 +z^(−3) ∣ will remain 0.  So there is no limit on ∣z+z^(−1) ∣

$${z}={re}^{\iota\theta} \\ $$$$\mid{z}^{\mathrm{3}} +{z}^{−\mathrm{3}} \mid=\mathrm{2}{r}^{\mathrm{3}} \mid\mathrm{cos}\:\mathrm{3}\theta\mid \\ $$$$\mid{z}+{z}^{−\mathrm{1}} \mid=\mathrm{2}{r}\mid\mathrm{cos}\:\theta\mid \\ $$$$\theta=\frac{\pi}{\mathrm{6}},\mathrm{3}\theta=\frac{\pi}{\mathrm{2}} \\ $$$$\mid{z}^{\mathrm{3}} +{z}^{−\mathrm{3}} \mid=\mathrm{0} \\ $$$$\mid{z}+{z}^{−\mathrm{1}} \mid=\mathrm{2}{r}\mathrm{cos}\:\frac{\pi}{\mathrm{6}}={r}\sqrt{\mathrm{3}} \\ $$$$\mathrm{You}\:\mathrm{can}\:\mathrm{choose}\:{r}. \\ $$$$\mid{z}^{\mathrm{3}} +{z}^{−\mathrm{3}} \mid\:\mathrm{will}\:\mathrm{remain}\:\mathrm{0}. \\ $$$$\mathrm{So}\:\mathrm{there}\:\mathrm{is}\:\mathrm{no}\:\mathrm{limit}\:\mathrm{on}\:\mid{z}+{z}^{−\mathrm{1}} \mid \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com