Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 87243 by john santu last updated on 03/Apr/20

lim_(x→0)  ((x− sin x)/(√((1−cos x)^p ))) = k   k = constant , find p

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}−\:\mathrm{sin}\:{x}}{\sqrt{\left(\mathrm{1}−\mathrm{cos}\:{x}\right)^{{p}} }}\:=\:{k}\: \\ $$$${k}\:=\:{constant}\:,\:\mathrm{find}\:\mathrm{p}\: \\ $$

Commented by jagoll last updated on 04/Apr/20

lim_(x→0)  ((x−(x−(x^3 /6)+o(x^3 )))/(√((2sin^2 ((x/2)))^p ))) = k  (1/(6×2^(p/2) )) × lim_(x→0)  ((x^3 −o(x^3 ))/(sin^((2p)/2) ((x/2)))) = k  since k = constant , so ((2p)/2)  should be p = 3 . such that  k = (8/(6×2(√2))) = (2/(3(√2))) = ((2(√2))/(3×2)) = ((√2)/3)

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{x}−\left(\mathrm{x}−\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{6}}+\mathrm{o}\left(\mathrm{x}^{\mathrm{3}} \right)\right)}{\sqrt{\left(\mathrm{2sin}\:^{\mathrm{2}} \left(\frac{\mathrm{x}}{\mathrm{2}}\right)\right)^{\mathrm{p}} }}\:=\:\mathrm{k} \\ $$$$\frac{\mathrm{1}}{\mathrm{6}×\mathrm{2}^{\frac{\mathrm{p}}{\mathrm{2}}} }\:×\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{x}^{\mathrm{3}} −\mathrm{o}\left(\mathrm{x}^{\mathrm{3}} \right)}{\mathrm{sin}\:^{\frac{\mathrm{2p}}{\mathrm{2}}} \left(\frac{\mathrm{x}}{\mathrm{2}}\right)}\:=\:\mathrm{k} \\ $$$$\mathrm{since}\:\mathrm{k}\:=\:\mathrm{constant}\:,\:\mathrm{so}\:\frac{\mathrm{2p}}{\mathrm{2}} \\ $$$$\mathrm{should}\:\mathrm{be}\:\mathrm{p}\:=\:\mathrm{3}\:.\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{k}\:=\:\frac{\mathrm{8}}{\mathrm{6}×\mathrm{2}\sqrt{\mathrm{2}}}\:=\:\frac{\mathrm{2}}{\mathrm{3}\sqrt{\mathrm{2}}}\:=\:\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}×\mathrm{2}}\:=\:\frac{\sqrt{\mathrm{2}}}{\mathrm{3}} \\ $$

Answered by mr W last updated on 04/Apr/20

=lim_(x→0) ((1−cos x)/((p/2)(1−cos x)^((p/2)−1) (sin x)))  =(2/p)lim_(x→0) (((1−cos x)^(2−(p/2)) )/((sin x)))  =(2/p)lim_(x→0) (((2sin^2  (x/2))^(2−(p/2)) )/(2 cos (x/2)sin (x/2)))  =±(2^(2−(p/2)) /p)lim_(x→0) (((sin (x/2))^(3−p) )/(cos (x/2)))= { ((=0 or ∞, if 3−p≠0)),((±(2^(2−(p/2)) /p)=k, if p=3)) :}  ⇒p=3, k=±(2^(2−(p/2)) /p)=±((√2)/3)

$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}−\mathrm{cos}\:{x}}{\frac{{p}}{\mathrm{2}}\left(\mathrm{1}−\mathrm{cos}\:{x}\right)^{\frac{{p}}{\mathrm{2}}−\mathrm{1}} \left(\mathrm{sin}\:{x}\right)} \\ $$$$=\frac{\mathrm{2}}{{p}}\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\mathrm{1}−\mathrm{cos}\:{x}\right)^{\mathrm{2}−\frac{{p}}{\mathrm{2}}} }{\left(\mathrm{sin}\:{x}\right)} \\ $$$$=\frac{\mathrm{2}}{{p}}\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\mathrm{2sin}^{\mathrm{2}} \:\frac{{x}}{\mathrm{2}}\right)^{\mathrm{2}−\frac{{p}}{\mathrm{2}}} }{\mathrm{2}\:\mathrm{cos}\:\frac{{x}}{\mathrm{2}}\mathrm{sin}\:\frac{{x}}{\mathrm{2}}} \\ $$$$=\pm\frac{\mathrm{2}^{\mathrm{2}−\frac{{p}}{\mathrm{2}}} }{{p}}\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\mathrm{sin}\:\frac{{x}}{\mathrm{2}}\right)^{\mathrm{3}−{p}} }{\mathrm{cos}\:\frac{{x}}{\mathrm{2}}}=\begin{cases}{=\mathrm{0}\:{or}\:\infty,\:{if}\:\mathrm{3}−{p}\neq\mathrm{0}}\\{\pm\frac{\mathrm{2}^{\mathrm{2}−\frac{{p}}{\mathrm{2}}} }{{p}}={k},\:{if}\:{p}=\mathrm{3}}\end{cases} \\ $$$$\Rightarrow{p}=\mathrm{3},\:{k}=\pm\frac{\mathrm{2}^{\mathrm{2}−\frac{{p}}{\mathrm{2}}} }{{p}}=\pm\frac{\sqrt{\mathrm{2}}}{\mathrm{3}} \\ $$

Commented by jagoll last updated on 04/Apr/20

why (d/dx) [(√((1−cos x)^p )) ] =  (p/2)(1−cos x)^((p/2)−1)  (−sin x) ?  not (p/2) (1−cos x)^((p/2)−1)  (+ sin x) ?   mr w?

$$\mathrm{why}\:\frac{\mathrm{d}}{\mathrm{dx}}\:\left[\sqrt{\left(\mathrm{1}−\mathrm{cos}\:\mathrm{x}\right)^{\mathrm{p}} }\:\right]\:= \\ $$$$\frac{\mathrm{p}}{\mathrm{2}}\left(\mathrm{1}−\mathrm{cos}\:\mathrm{x}\right)^{\frac{\mathrm{p}}{\mathrm{2}}−\mathrm{1}} \:\left(−\mathrm{sin}\:\mathrm{x}\right)\:? \\ $$$$\mathrm{not}\:\frac{\mathrm{p}}{\mathrm{2}}\:\left(\mathrm{1}−\mathrm{cos}\:\mathrm{x}\right)^{\frac{\mathrm{p}}{\mathrm{2}}−\mathrm{1}} \:\left(+\:\mathrm{sin}\:\mathrm{x}\right)\:?\: \\ $$$$\mathrm{mr}\:\mathrm{w}? \\ $$

Commented by mr W last updated on 04/Apr/20

+sin x is correct.  but  lim_(x→0^+ )  ∗∗=k=+((√2)/3)  lim_(x→0^− )  ∗∗=k=−((√2)/3)

$$+\mathrm{sin}\:{x}\:{is}\:{correct}. \\ $$$${but} \\ $$$$\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\ast\ast={k}=+\frac{\sqrt{\mathrm{2}}}{\mathrm{3}} \\ $$$$\underset{{x}\rightarrow\mathrm{0}^{−} } {\mathrm{lim}}\:\ast\ast={k}=−\frac{\sqrt{\mathrm{2}}}{\mathrm{3}} \\ $$

Commented by john santu last updated on 04/Apr/20

ok sir

$$\mathrm{ok}\:\mathrm{sir} \\ $$

Commented by mr W last updated on 04/Apr/20

since k=0 is also constant, the   answer should be p≤3.

$${since}\:{k}=\mathrm{0}\:{is}\:{also}\:{constant},\:{the}\: \\ $$$${answer}\:{should}\:{be}\:{p}\leqslant\mathrm{3}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com