Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 87296 by ajfour last updated on 03/Apr/20

If  ellipse  (x^2 /a^2 )+(y^2 /b^2 )=1  (a>b)  is rotated about x-axis, find the  surface of the solid of revolution.

Ifellipsex2a2+y2b2=1(a>b) isrotatedaboutxaxis,findthe surfaceofthesolidofrevolution.

Answered by mr W last updated on 04/Apr/20

let μ=(b/a)  x=a cos θ  y=b sin θ  dx=−a sin θ dθ  dy=b cos θ dθ  ds=(√((dx)^2 +(dy)^2 ))=(√(a^2 sin^2  θ+b^2 cos^2  θ))dθ  S=2×2π∫_0 ^(π/2) b sin θ (√(a^2 sin^2  θ+b^2 cos^2  θ))dθ  =4πab∫_0 ^(π/2) sin θ (√(sin^2  θ+μ^2 cos^2  θ))dθ  =4πab∫_(π/2) ^0 (√(1−(1−μ^2 )cos^2  θ))d(cos θ)  =4πab∫_0 ^1 (√(1−kt^2 ))dt  with k=1−μ^2 , t=cos θ  =...  =4πab[((sin^(−1) (√k)t)/(2(√k)))+((t(√(1−kt^2 )))/2)]_0 ^1   =4πab[((sin^(−1) (√k))/(2(√k)))+((√(1−k))/2)]  =2πab[((sin^(−1) (√(1−μ^2 )))/(√(1−μ^2 )))+μ] with μ=(b/a)    with a=b ⇒sphere a=b=R,μ=1  S=2πR^2 (1+1)=4πR^2

letμ=ba x=acosθ y=bsinθ dx=asinθdθ dy=bcosθdθ ds=(dx)2+(dy)2=a2sin2θ+b2cos2θdθ S=2×2π0π2bsinθa2sin2θ+b2cos2θdθ =4πab0π2sinθsin2θ+μ2cos2θdθ =4πabπ201(1μ2)cos2θd(cosθ) =4πab011kt2dtwithk=1μ2,t=cosθ =... =4πab[sin1kt2k+t1kt22]01 =4πab[sin1k2k+1k2] =2πab[sin11μ21μ2+μ]withμ=ba witha=bspherea=b=R,μ=1 S=2πR2(1+1)=4πR2

Commented byajfour last updated on 04/Apr/20

Exactly, thanks Sir.  S=2πb^2 +2πab(((sin^(−1) λ)/λ))     λ=((√(a^2 −b^2 ))/a) .

Exactly,thanksSir. S=2πb2+2πab(sin1λλ) λ=a2b2a.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com