Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 87296 by ajfour last updated on 03/Apr/20

If  ellipse  (x^2 /a^2 )+(y^2 /b^2 )=1  (a>b)  is rotated about x-axis, find the  surface of the solid of revolution.

$${If}\:\:{ellipse}\:\:\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1}\:\:\left({a}>{b}\right) \\ $$ $${is}\:{rotated}\:{about}\:{x}-{axis},\:{find}\:{the} \\ $$ $${surface}\:{of}\:{the}\:{solid}\:{of}\:{revolution}. \\ $$

Answered by mr W last updated on 04/Apr/20

let μ=(b/a)  x=a cos θ  y=b sin θ  dx=−a sin θ dθ  dy=b cos θ dθ  ds=(√((dx)^2 +(dy)^2 ))=(√(a^2 sin^2  θ+b^2 cos^2  θ))dθ  S=2×2π∫_0 ^(π/2) b sin θ (√(a^2 sin^2  θ+b^2 cos^2  θ))dθ  =4πab∫_0 ^(π/2) sin θ (√(sin^2  θ+μ^2 cos^2  θ))dθ  =4πab∫_(π/2) ^0 (√(1−(1−μ^2 )cos^2  θ))d(cos θ)  =4πab∫_0 ^1 (√(1−kt^2 ))dt  with k=1−μ^2 , t=cos θ  =...  =4πab[((sin^(−1) (√k)t)/(2(√k)))+((t(√(1−kt^2 )))/2)]_0 ^1   =4πab[((sin^(−1) (√k))/(2(√k)))+((√(1−k))/2)]  =2πab[((sin^(−1) (√(1−μ^2 )))/(√(1−μ^2 )))+μ] with μ=(b/a)    with a=b ⇒sphere a=b=R,μ=1  S=2πR^2 (1+1)=4πR^2

$${let}\:\mu=\frac{{b}}{{a}} \\ $$ $${x}={a}\:\mathrm{cos}\:\theta \\ $$ $${y}={b}\:\mathrm{sin}\:\theta \\ $$ $${dx}=−{a}\:\mathrm{sin}\:\theta\:{d}\theta \\ $$ $${dy}={b}\:\mathrm{cos}\:\theta\:{d}\theta \\ $$ $${ds}=\sqrt{\left({dx}\right)^{\mathrm{2}} +\left({dy}\right)^{\mathrm{2}} }=\sqrt{{a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta+{b}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta}{d}\theta \\ $$ $${S}=\mathrm{2}×\mathrm{2}\pi\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {b}\:\mathrm{sin}\:\theta\:\sqrt{{a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta+{b}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta}{d}\theta \\ $$ $$=\mathrm{4}\pi{ab}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{sin}\:\theta\:\sqrt{\mathrm{sin}^{\mathrm{2}} \:\theta+\mu^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta}{d}\theta \\ $$ $$=\mathrm{4}\pi{ab}\int_{\frac{\pi}{\mathrm{2}}} ^{\mathrm{0}} \sqrt{\mathrm{1}−\left(\mathrm{1}−\mu^{\mathrm{2}} \right)\mathrm{cos}^{\mathrm{2}} \:\theta}{d}\left(\mathrm{cos}\:\theta\right) \\ $$ $$=\mathrm{4}\pi{ab}\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}−{kt}^{\mathrm{2}} }{dt}\:\:{with}\:{k}=\mathrm{1}−\mu^{\mathrm{2}} ,\:{t}=\mathrm{cos}\:\theta \\ $$ $$=... \\ $$ $$=\mathrm{4}\pi{ab}\left[\frac{\mathrm{sin}^{−\mathrm{1}} \sqrt{{k}}{t}}{\mathrm{2}\sqrt{{k}}}+\frac{{t}\sqrt{\mathrm{1}−{kt}^{\mathrm{2}} }}{\mathrm{2}}\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$ $$=\mathrm{4}\pi{ab}\left[\frac{\mathrm{sin}^{−\mathrm{1}} \sqrt{{k}}}{\mathrm{2}\sqrt{{k}}}+\frac{\sqrt{\mathrm{1}−{k}}}{\mathrm{2}}\right] \\ $$ $$=\mathrm{2}\pi{ab}\left[\frac{\mathrm{sin}^{−\mathrm{1}} \sqrt{\mathrm{1}−\mu^{\mathrm{2}} }}{\sqrt{\mathrm{1}−\mu^{\mathrm{2}} }}+\mu\right]\:{with}\:\mu=\frac{{b}}{{a}} \\ $$ $$ \\ $$ $${with}\:{a}={b}\:\Rightarrow{sphere}\:{a}={b}={R},\mu=\mathrm{1} \\ $$ $${S}=\mathrm{2}\pi{R}^{\mathrm{2}} \left(\mathrm{1}+\mathrm{1}\right)=\mathrm{4}\pi{R}^{\mathrm{2}} \\ $$

Commented byajfour last updated on 04/Apr/20

Exactly, thanks Sir.  S=2πb^2 +2πab(((sin^(−1) λ)/λ))     λ=((√(a^2 −b^2 ))/a) .

$${Exactly},\:{thanks}\:{Sir}. \\ $$ $${S}=\mathrm{2}\pi{b}^{\mathrm{2}} +\mathrm{2}\pi{ab}\left(\frac{\mathrm{sin}^{−\mathrm{1}} \lambda}{\lambda}\right) \\ $$ $$\:\:\:\lambda=\frac{\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }}{{a}}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com