All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 87301 by M±th+et£s last updated on 03/Apr/20
Commented by mathmax by abdo last updated on 04/Apr/20
letI=∫1+∞dx2[x]2+[x]⇒I=∑n=1∞∫nn+1dx2n2+n=∑n=1∞1n(2n+1)=limn→+∞∑k=1n1k(2k+1)=limn→+∞Sn12Sn=∑k=1n(12k−12k+1)=12∑k=1n1k−∑k=1n12k+1∑k=1n1k=Hn∑k=1n12k+1=13+15+....+12n+1=1+12+13+14+...+12n+12n+1−1−12−14−....−12n=H2n+1−1−12Hn⇒12Sn=12Hn−H2n+1+12Hn+1=(ln(n)+γ+o(1n))−ln(2n+1)−γ+o(12n+1)+1=ln(n2n+1)+1⇒1−ln(2)⇒Sn→2−2ln(2)(n→+∞)wehaveln(e24)=2ln(e)−2ln(2)=2−2ln(2)I=limSn=2−2ln(2)=ln(e24).
Commented by M±th+et£s last updated on 04/Apr/20
godblessyousir.greatsolution
Commented by abdomathmax last updated on 04/Apr/20
youarewelcome.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com