Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 87301 by M±th+et£s last updated on 03/Apr/20

Commented by mathmax by abdo last updated on 04/Apr/20

let  I =∫_1 ^(+∞)  (dx/(2[x]^2  +[x])) ⇒ I =Σ_(n=1) ^∞   ∫_n ^(n+1)   (dx/(2n^2  +n))   =Σ_(n=1) ^∞  (1/(n(2n+1))) =lim_(n→+∞)   Σ_(k=1) ^n  (1/(k(2k+1))) =lim_(n→+∞)   S_n   (1/2)S_n =Σ_(k=1) ^n ((1/(2k))−(1/(2k+1))) =(1/2)Σ_(k=1) ^n  (1/k)−Σ_(k=1) ^n  (1/(2k+1))  Σ_(k=1) ^n  (1/k) =H_n   Σ_(k=1) ^n  (1/(2k+1)) =(1/3)+(1/5)+....+(1/(2n+1)) =1+(1/2)+(1/3)+(1/4)+...+(1/(2n))+(1/(2n+1))  −1−(1/2)−(1/4)−....−(1/(2n)) =H_(2n+1) −1−(1/2)H_n  ⇒  (1/2)S_n =(1/2)H_n −H_(2n+1) +(1/2)H_n +1  =(ln(n)+γ +o((1/n)))−ln(2n+1)−γ +o((1/(2n+1))) +1  =ln((n/(2n+1)))+1 ⇒1−ln(2) ⇒S_n →2−2ln(2) (n→+∞)  we have ln((e^2 /4)) =2ln(e)−2ln(2) =2−2ln(2)  I =lim S_n =2−2ln(2)=ln((e^2 /4)) .

letI=1+dx2[x]2+[x]I=n=1nn+1dx2n2+n=n=11n(2n+1)=limn+k=1n1k(2k+1)=limn+Sn12Sn=k=1n(12k12k+1)=12k=1n1kk=1n12k+1k=1n1k=Hnk=1n12k+1=13+15+....+12n+1=1+12+13+14+...+12n+12n+111214....12n=H2n+1112Hn12Sn=12HnH2n+1+12Hn+1=(ln(n)+γ+o(1n))ln(2n+1)γ+o(12n+1)+1=ln(n2n+1)+11ln(2)Sn22ln(2)(n+)wehaveln(e24)=2ln(e)2ln(2)=22ln(2)I=limSn=22ln(2)=ln(e24).

Commented by M±th+et£s last updated on 04/Apr/20

god bless you sir. great solution

godblessyousir.greatsolution

Commented by abdomathmax last updated on 04/Apr/20

you are welcome.

youarewelcome.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com