Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 87306 by abdomathmax last updated on 03/Apr/20

calculate by complex method ∫_1 ^(+∞)  ((xdx)/(x^4  +1))

calculatebycomplexmethod1+xdxx4+1

Commented by Ar Brandon last updated on 03/Apr/20

My  suggestion  ∫_1 ^(+∞) (x/(x^4 +1))dx=∫_1 ^(+∞) (x/(1+(x^2 )^2 ))dx=(1/2)∫_1 ^(+∞) ((2x)/(1+(x^2 )^2 ))dx                               =(1/2)[arctan(x^2 )]_1 ^(+∞) =(1/2)((π/2))−(1/2)((π/4))=(π/8)

Mysuggestion1+xx4+1dx=1+x1+(x2)2dx=121+2x1+(x2)2dx=12[arctan(x2)]1+=12(π2)12(π4)=π8

Commented by Ar Brandon last updated on 04/Apr/20

By  complex  method  Let  x^4 +1=0⇒x^4 =−1  ∣x^4 ∣=1  and  arg(x^4 )=π mod(2π) ⇒∣x∣=1  and  arg(x)=(π/4)mod((π/2))  ⇒x_k =e^((2k+1)(π/4)i)     k∈Z  ⇒x^4 +1=Π_(k=−2) ^1 (x−x_k )  ⇒(x/(x^4 +1))=(x/(Π_(k=−2) ^1 (x−x_k )))=Σ_(k=−2) ^1 (a_k /((x−x_k )))  a_k =(x_k /(4x_k ^3 ))   i.e ((P(x_k ))/(Q′(x_k )))  ⇒(x/(x^4 +1))=Σ_(k=−2) ^1 (1/(4(x_k ^2 )(x−x_k )))  ∫_1 ^(+∞) (x/(x^4 +1))dx=∫_1 ^(+∞) Σ_(k=−2) ^1 (1/(4(x_k ^2 )(x−x_k )))dx                              =∫_1 ^(+∞) (1/(4i(x+((√2)/2)+i((√2)/2))))dx−∫_1 ^(+∞) (1/(4i(x−((√2)/2)+i((√2)/2))))dx                                  +∫_1 ^(+∞) (1/(4i(x−((√2)/2)−i((√2)/2))))dx−∫_1 ^(+∞) (1/(4i(x+((√2)/2)−i((√2)/2))))dx

BycomplexmethodLetx4+1=0x4=1x4∣=1andarg(x4)=πmod(2π)⇒∣x∣=1andarg(x)=π4mod(π2)xk=e(2k+1)π4ikZx4+1=1k=2(xxk)xx4+1=x1k=2(xxk)=1k=2ak(xxk)ak=xk4xk3i.eP(xk)Q(xk)xx4+1=1k=214(xk2)(xxk)1+xx4+1dx=1+1k=214(xk2)(xxk)dx=1+14i(x+22+i22)dx1+14i(x22+i22)dx+1+14i(x22i22)dx1+14i(x+22i22)dx

Commented by Ar Brandon last updated on 04/Apr/20

=((ln∞)/(4i))−(1/(4i))ln(∣1+((√2)/2)+i((√2)/2)∣)−((ln∞)/(4i))+(1/(4i))ln(∣1−((√2)/2)+i((√2)/2)∣)    +((ln∞)/(4i))−(1/(4i))ln(∣1−((√2)/2)−i((√2)/2)∣)−((ln∞)/(4i))+(1/(4i))ln(∣1+((√2)/2)−i((√2)/2)∣)  =(1/(4i))ln(∣1+((√2)/2)−i((√2)/2)∣)−(1/(4i))ln(∣1−((√2)/2)−i((√2)/2)∣)    +(1/(4i))ln(∣1−((√2)/2)+i((√2)/2)∣)−(1/(4i))ln(∣1+((√2)/2)+i((√2)/2)∣)

=ln4i14iln(1+22+i22)ln4i+14iln(122+i22)+ln4i14iln(122i22)ln4i+14iln(1+22i22)=14iln(1+22i22)14iln(122i22)+14iln(122+i22)14iln(1+22+i22)

Commented by mathmax by abdo last updated on 04/Apr/20

thanks sir

thankssir

Commented by mathmax by abdo last updated on 04/Apr/20

let decompose F(x)=(x/(x^4  +1))  poles of F?  x^4 +1 =0 ⇔ x^4 =e^((2k+1)π)  ⇒ x_k =e^((i(2k+1)π)/4)  and k∈[[0,3]]  F(x) =Σ_(k.=0) ^3  (a_k /(x−x_k ))  with a_(k ) =(x_k /(4x_k ^3 )) =−(1/4)x_k ^2  =−(1/4)e^((i(2k+1)π)/2)   =−(1/4) (i)^(2k+1)  =−(1/4)(−1)^k  i =(i/4)(−1)^k  ⇒  ∫_1 ^(+∞)  F(x)dx =(i/4) Σ_(k=0) ^3  (−1)^k  ∫_1 ^(+∞)   (dx/(x−x_k ))  we have x_0 =e^((iπ)/4)     , x_1 =e^((i3π)/4)   , x_2 =e^(i((5π)/4))  =x_1 ^−    , x_3 =e^((i7π)/4)  =e^(i(((8π−π)/4))) =x_0 ^−    ⇒  ∫_1 ^(+∞)  F(x)dx =(i/4){ ∫_1 ^(+∞)  (dx/(x−x_0 ))−∫_1 ^(+∞)  (dx/(x−x_1 )) +∫_1 ^(+∞)  (dx/(x−x_1 ^− ))  −∫_1 ^(+∞)  (dx/(x−x_0 ^− ))} =(i/4)[ln(((x−x_o )/(x−x_1 )))]_1 ^(+∞)  +[ln(((x−x_1 ^− )/(x−x_0 ^− )))]_1 ^(+∞)   =(i/4)(−ln(((1−x_0 )/(1−x_1 )))−ln(((1−x_1 ^− )/(1−x_0 ^− ))))   =(i/4){ ln(((1−x_1 )/(1−x_0 )))+ln(((1−x_0 ^− )/(1−x_1 ^− )))}  rest to finish the calculus

letdecomposeF(x)=xx4+1polesofF?x4+1=0x4=e(2k+1)πxk=ei(2k+1)π4andk[[0,3]]F(x)=k.=03akxxkwithak=xk4xk3=14xk2=14ei(2k+1)π2=14(i)2k+1=14(1)ki=i4(1)k1+F(x)dx=i4k=03(1)k1+dxxxkwehavex0=eiπ4,x1=ei3π4,x2=ei5π4=x1,x3=ei7π4=ei(8ππ4)=x01+F(x)dx=i4{1+dxxx01+dxxx1+1+dxxx11+dxxx0}=i4[ln(xxoxx1)]1++[ln(xx1xx0)]1+=i4(ln(1x01x1)ln(1x11x0))=i4{ln(1x11x0)+ln(1x01x1)}resttofinishthecalculus

Commented by Ar Brandon last updated on 04/Apr/20

I should be the one thanking you. Haha!   I learned the method from you. It′s the method you   used when integrating (x^6 /(1+x^(12) ))

Ishouldbetheonethankingyou.Haha!Ilearnedthemethodfromyou.Itsthemethodyouusedwhenintegratingx61+x12

Commented by Ar Brandon last updated on 04/Apr/20

��

Commented by mind is power last updated on 04/Apr/20

nice   the  goal of this Forum  is to  help and learnd new tricks  personaly i learnd new  ideas in this forum   sorry for my English

nicethegoalofthisForumistohelpandlearndnewtrickspersonalyilearndnewideasinthisforumsorryformyEnglish

Commented by Ar Brandon last updated on 05/Apr/20

And I′m doing same here.

AndImdoingsamehere.

Answered by mind is power last updated on 04/Apr/20

∫_0 ^1 ((xdx)/((x^4 +1)))=∫_1 ^(+∞) ((xdx)/((1+x^4 )))  ∫_1 ^(+∞) ((xdx)/(x^4 +1))=(1/2)∫_0 ^∞ ((xdx)/(x^4 +1))  f(z)=(z/(1+z^4 )),let C_R =[0,R]∪{Re^(iθ) ,θ∈[0,(π/2)]}_(=γ) ∪[iR,0];R>1  ∫_C_R  f(z)dz=2iπRes(f,z=e^(i(π/4)) )=2iπ.(1/(4(e^(i(π/2)) )))=(π/2)  ∫_γ f(z)dz=∫_0 ^(π/2) Rie^(iθ) f(Re^(iθ) )dθ  =iR^2 ∫_0 ^(π/2) (e^(2iθ) /(R^4 e^(4iθ) +1))dθ,∣∫f(z)dz∣≤(π/2).(R^2 /(R^4 −1))→0 as R→∞  ∫_(iR) ^0 f(z)dz=i∫_R ^0 f(it)dz=∫_0 ^R (t/(t^4 +1))dt  ⇒lim_(R→∞) ∫_C_R  f(z)dz=lim_(R→∞) 2∫_0 ^R ((tdt)/(t^4 +1))=(π/2)  ∫_0 ^∞ ((tdt)/(t^4 +1)).=(π/4)  ∫_1 ^∞ ((xdx)/(x^4 +1))=(π/8)    .

01xdx(x4+1)=1+xdx(1+x4)1+xdxx4+1=120xdxx4+1Missing \left or extra \rightCRf(z)dz=2iπRes(f,z=eiπ4)=2iπ.14(eiπ2)=π2γf(z)dz=0π2Rieiθf(Reiθ)dθ=iR20π2e2iθR4e4iθ+1dθ,f(z)dz∣⩽π2.R2R410asRiR0f(z)dz=iR0f(it)dz=0Rtt4+1dtlimRCRf(z)dz=lim2R0Rtdtt4+1=π20tdtt4+1.=π41xdxx4+1=π8.

Commented by mathmax by abdo last updated on 04/Apr/20

thanks sir

thankssir

Commented by mind is power last updated on 04/Apr/20

withe pleasur sir

withepleasursir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com