Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 87313 by mr W last updated on 03/Apr/20

a,b,c=1,2,3,...,n  find Σ_(a≠b≠c) abc

a,b,c=1,2,3,...,nfindabcabc

Commented by mr W last updated on 04/Apr/20

yes, you are right.

yes,youareright.

Commented by mr W last updated on 04/Apr/20

for example n=4  Σ_(a≠b≠c) abc=1×2×3+1×2×4+1×3×4+2×3×4=50

forexamplen=4abcabc=1×2×3+1×2×4+1×3×4+2×3×4=50

Commented by mr W last updated on 03/Apr/20

to choose three different numbers  from n numbers there are C_3 ^n    combinations. from each combination  we get the product of the three numbers.  now it is to find the sum of all these  products.

tochoosethreedifferentnumbersfromnnumbersthereareC3ncombinations.fromeachcombinationwegettheproductofthethreenumbers.nowitistofindthesumofalltheseproducts.

Commented by MJS last updated on 04/Apr/20

sorry but for n=4 we have  1×2×3+1×2×4+1×3×4+2×3×4=50

sorrybutforn=4wehave1×2×3+1×2×4+1×3×4+2×3×4=50

Answered by mr W last updated on 04/Apr/20

S=Σabc=(Σ_(a=1) ^n a)(Σ_(b=1) ^n b)(Σ_(c=1) ^n c)=[((n(n+1))/2)]^3     S_1 =Σ_(a=b=c) abc=Σ_(a=1) ^n a^3 =((n^2 (n+1)^2 )/4)    S_2 =Σ_(a,b=c≠a) abc=3Σ_(b=1) ^n [(Σ_(a=1) ^n a−b)(b^2 )]  =3Σ_(b=1) ^n [(Σ_(a=1) ^n a)b^2 −b^3 ]  =3[(Σ_(a=1) ^n a)(Σ_(b=1) ^n b^2 )−(Σ_(b=1) ^n b^3 )]  =3[((n(n+1))/2)×((n(n+1)(2n+1))/6)−((n^2 (n+1)^2 )/4)]  =(((n−1)n^2 (n+1)^2 )/2)    S_3 =Σ_(a≠b≠c) abc=(1/(3!))(S−S_1 −S_2 )  =(1/6)[((n^3 (n+1)^3 )/8)−((n^2 (n+1)^2 )/4)−(((n−1)n^2 (n+1)^2 )/2)]  =(((n−2)(n−1)n^2 (n+1)^2 )/(48))    example: n=4  S_3 =((2×3×4^2 ×5^2 )/(48))=50  1×2×3+1×2×4+1×3×4+2×3×3  =50    example: n=5  S_3 =((3×4×5^2 ×6^2 )/(48))=225  1×2×3+1×2×4+1×2×5+1×3×4+1×3×5+1×4×5  +2×3×4+2×3×5  +3×4×5  =225

S=Σabc=(na=1a)(nb=1b)(nc=1c)=[n(n+1)2]3S1=a=b=cabc=na=1a3=n2(n+1)24S2=a,b=caabc=3nb=1[(na=1ab)(b2)]=3nb=1[(na=1a)b2b3]=3[(na=1a)(nb=1b2)(nb=1b3)]=3[n(n+1)2×n(n+1)(2n+1)6n2(n+1)24]=(n1)n2(n+1)22S3=abcabc=13!(SS1S2)=16[n3(n+1)38n2(n+1)24(n1)n2(n+1)22]=(n2)(n1)n2(n+1)248example:n=4S3=2×3×42×5248=501×2×3+1×2×4+1×3×4+2×3×3=50example:n=5S3=3×4×52×6248=2251×2×3+1×2×4+1×2×5+1×3×4+1×3×5+1×4×5+2×3×4+2×3×5+3×4×5=225

Terms of Service

Privacy Policy

Contact: info@tinkutara.com