Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 87325 by M±th+et£s last updated on 04/Apr/20

1) ∫e^(√x)  dx  2)∫((√(sin(x)))/((√(sin(x)))+(√(cos(x)))))dx

1)exdx2)sin(x)sin(x)+cos(x)dx

Commented by Serlea last updated on 04/Apr/20

1) ∫e^(√x) dx  let (√x)=Y  x=y^2   dx=y^2 dy   ∫e^(√x) dx=∫e^y (2ydy)  =∫2ye^y dy  U=2y U′=2  V′=e^y       V=e^y     ∫2ye^y dy=2Ye^y −∫2e^y                      =2Ye^y −2e^y                      =2e^y (y−1)                    =2e^(√x) ((√x)−1)

1)exdxletx=Yx=y2dx=y2dyexdx=ey(2ydy)=2yeydyU=2yU=2V=eyV=ey2yeydy=2Yey2ey=2Yey2ey=2ey(y1)=2ex(x1)

Commented by peter frank last updated on 04/Apr/20

qn 2 limit ?

qn2limit?

Commented by M±th+et£s last updated on 04/Apr/20

no sir

nosir

Answered by MJS last updated on 04/Apr/20

2)  ∫((√(sin x))/((√(sin x))+(√(cos x))))dx=       [t=(√(tan x)) → dx=2cos^2  x (√(tan x))dt]  =2∫(t^2 /((t^4 +1)(t+1)))dt=  =−((1−(√2))/2)∫((t+1)/(t^2 −(√2)t+1))dt−((1+(√2))/2)∫((t+1)/(t^2 +(√2)t+1))dt+∫(dt/(t+1))  now it should be easy

2)sinxsinx+cosxdx=[t=tanxdx=2cos2xtanxdt]=2t2(t4+1)(t+1)dt==122t+1t22t+1dt1+22t+1t2+2t+1dt+dtt+1nowitshouldbeeasy

Commented by peter frank last updated on 04/Apr/20

thank you

thankyou

Commented by M±th+et£s last updated on 04/Apr/20

thank you

thankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com