All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 87335 by naka3546 last updated on 04/Apr/20
Answered by TANMAY PANACEA. last updated on 04/Apr/20
∫0π2sinaxsinax+cosaxdx=Iπ4using∫0bf(x)dx=∫0bf(b−x)dxIπ4=∫0π2sina(π2−x)sina(π2−x)+cosa(π2−x)dxIπ4=∫0π2cosaxcosax+sinaxdx2×Iπ4=∫0π2(sinaxcosax+sinax+cosaxsinax+cosax)dxIπ2=∫0π2dxI=1
Terms of Service
Privacy Policy
Contact: info@tinkutara.com