Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 87340 by john santu last updated on 04/Apr/20

∫ ((cos x)/((5+4cos x)^2 )) dx =

cosx(5+4cosx)2dx=

Commented by john santu last updated on 04/Apr/20

dear mr Mjs. whether methods   besides weierstrass substitution?

dearmrMjs.whethermethodsbesidesweierstrasssubstitution?

Commented by MJS last updated on 04/Apr/20

all other methods are super complicated

allothermethodsaresupercomplicated

Commented by mathmax by abdo last updated on 04/Apr/20

I =∫  ((cosx)/((5+4cosx)^2 ))dx ⇒I =(1/(25))∫  ((cosx)/((1+(4/5)cosx)^2 ))dx  let f(a) =∫    (dx/(1+acosx))  with 0<a<1 ⇒f^′ (a) =−∫  ((cosx)/((1+acosx)^2 ))dx ⇒  ∫  ((cosx)/((1+acosx)^2 ))dx =−f^′ (a) and I =−(1/(25))f^′ ((4/5)) let explicit f(a)  f(a) =_(tan((x/2))=t)    ∫   ((2dt)/((1+t^2 )(1+a((1−t^2 )/(1+t^2 )))))  =∫  ((2dt)/(1+t^2 +a−at^2 )) =∫  ((2dt)/((1−a)t^2  +1+a)) =(2/(1−a))∫  (dt/(t^2  +((1+a)/(1−a))))  =_(t=(√((1+a)/(1−a)))u)     (2/(1−a))×((1−a)/(1+a)) ∫   (1/(1+u^2 ))×(√((1+a)/(1−a)))du  =(2/(√(1−a^2 ))) arctan((√((1−a)/(1+a)))t) +C  =(2/(√(1−a^2 ))) arctan((√((1−a)/(1+a)))tan((x/2))) +C ⇒  f^′ (a) =(2(1−a^2 )^(−(1/2)) )^′  arctan((√((1−a)/(1+a)))tan((x/2)))  +(2/(√(1−a^2 ))) {  ((((√((1−a)/(1+a)))tan((x/2))^′ )/(1+((1−a)/(1+a))tan^2 ((x/2))))}  =−(−2a)(1−a^2 )^(−(3/2))  arctan((√((1−a)/(1+a)))tan((x/2)))  +(2/(√(1−a^2 )))tan((x/2))×(1/(1+((1−a)/(1+a))tan^2 ((x/2))))×(((((1−a)/(1+a)))^′ )/(2(√((1−a)/(1+a)))))  =2a(1−a^2 )^(−(3/2))  arctan((√((1−a)/(1+a)))tan((x/2)))  +(2/(√(1−a^2 )))tan((x/2))×(1/(1+((1−a)/(1+a))tan^2 ((x/2))))×((−2)/((1+a)^2 ×2(√((1−a)/(1+a)))))  I =−(1/(25))f^′ ((4/5))

I=cosx(5+4cosx)2dxI=125cosx(1+45cosx)2dxletf(a)=dx1+acosxwith0<a<1f(a)=cosx(1+acosx)2dxcosx(1+acosx)2dx=f(a)andI=125f(45)letexplicitf(a)f(a)=tan(x2)=t2dt(1+t2)(1+a1t21+t2)=2dt1+t2+aat2=2dt(1a)t2+1+a=21adtt2+1+a1a=t=1+a1au21a×1a1+a11+u2×1+a1adu=21a2arctan(1a1+at)+C=21a2arctan(1a1+atan(x2))+Cf(a)=(2(1a2)12)arctan(1a1+atan(x2))+21a2{(1a1+atan(x2)1+1a1+atan2(x2)}=(2a)(1a2)32arctan(1a1+atan(x2))+21a2tan(x2)×11+1a1+atan2(x2)×(1a1+a)21a1+a=2a(1a2)32arctan(1a1+atan(x2))+21a2tan(x2)×11+1a1+atan2(x2)×2(1+a)2×21a1+aI=125f(45)

Answered by ajfour last updated on 04/Apr/20

let tan (x/2)=t   ⇒  (1/2)(sec^2 (x/2))dx=dt  ⇒  dx=((2dt)/(1+t^2 ))  ,  cos x=((1−t^2 )/(1+t^2 ))  I=∫(((((1−t^2 )/(1+t^2 )))(((2dt)/(1+t^2 ))))/((5+((4−4t^2 )/(1+t^2 )))^2 ))    I= 2∫((1−t^2 )/((9+t^2 )^2 ))dt  now   let   t=3tan θ  dt=3sec^2 θdθ  I=2∫((1−9tan^2 θ)/(81sec^4 θ))(3sec^2 θdθ)  say   tan θ=z  I=(2/(27))∫cos^2 θdθ−(1/3)∫sin^2 θdθ    ......

lettanx2=t12(sec2x2)dx=dtdx=2dt1+t2,cosx=1t21+t2I=(1t21+t2)(2dt1+t2)(5+44t21+t2)2I=21t2(9+t2)2dtnowlett=3tanθdt=3sec2θdθI=219tan2θ81sec4θ(3sec2θdθ)saytanθ=zI=227cos2θdθ13sin2θdθ......

Commented by jagoll last updated on 04/Apr/20

weierstrass substitution

weierstrasssubstitution

Commented by ajfour last updated on 04/Apr/20

is this the name to the method?

isthisthenametothemethod?

Commented by jagoll last updated on 04/Apr/20

yes sir

yessir

Commented by john santu last updated on 04/Apr/20

yes this method weierstrass   substitution

yesthismethodweierstrasssubstitution

Commented by ajfour last updated on 04/Apr/20

alright, i couldn′t go along any  other line.

alright,icouldntgoalonganyotherline.

Answered by TANMAY PANACEA. last updated on 04/Apr/20

t=5+4cosx→cosx=((t−5)/4)  (1/4)∫((4cosx+5−5)/((5+4cosx)^2 ))dx  (1/4)∫(dx/(5+4cosx))−(5/4)∫(dx/((5+4cosx)^2 ))★     let I_1 =∫(dx/(5+4cosx))  and I_2 =∫(dx/((5+4cosx)^2 ))  so I=(I_1 /4)−((5I_2 )/4).......eqn  (1)    p=((sinx)/(5+4cosx))  (dp/dx)=(((5+4cosx)cosx−sinx(−4sinx))/((5+4cosx)^2 ))  (dp/dx)=((5cosx+4)/((5+4cosx)^2 ))=((((5(t−5))/4)+4)/t^2 )=((5t−9)/(4t^2 ))=(5/(4t))−(9/(4t^2 ))  ((sinx)/(5+4cosx))=(5/4)∫(dx/(5+cosx))−(9/4)∫(dx/((5+4cosx)^2 ))    now look  ((sinx)/(5+4cosx))=((5I_1 )/4)−((9I_2 )/4)....eqn(2)  [5I_1 −4(((sinx)/(5+cosx)))]×(1/9)=I_2     ■ look if we find the value of I_1 =∫(dx/(5+4cosx))  then from eqn(2) we get value of I_2   finaly we get I=(I_1 /4)−((5I_2 )/4)■  ∫(dx/(5+4cosx))=∫((sec^2 (x/2))/(5+5tan^2 (x/2)+4−4tan^2 (x/2)))dx=∫((sec^2 (x/2))/(tan^2 (x/2)+3^2 ))  =2∫((d(tan(x/2)))/(3^2 +tan^2 (x/2)))dx=2×(1/3)tan^(−1) (((tan(x/2))/3))+c_1   =  I_1 =(2/3)tan^(−1) (((tan(x/2))/3))  I_2 =(1/9)[5I_1 −((4sinx)/(5+4cosx))]  I_2 =(1/9)[((10)/3)tan^(−1) (((tan(x/2))/3))−((4sinx)/(5+4cosx))]^   finally  I=(I_1 /4)−((5I_2 )/4)=(2/(12))tan^(−1) (((tan(x/2))/3))−(5/4)×(1/9)[((10)/3)tan^(−1) (((tan(x/2))/3))−((4sinx)/(5+4cosx))]  I=((2/(12))−((50)/(108)))tan^(−1) (((tan(x/2))/3))+(5/(36))(((4sinx)/(5+4cosx)))+C

t=5+4cosxcosx=t54144cosx+55(5+4cosx)2dx14dx5+4cosx54dx(5+4cosx)2letI1=dx5+4cosxandI2=dx(5+4cosx)2soI=I145I24.......eqn(1)p=sinx5+4cosxdpdx=(5+4cosx)cosxsinx(4sinx)(5+4cosx)2dpdx=5cosx+4(5+4cosx)2=5(t5)4+4t2=5t94t2=54t94t2sinx5+4cosx=54dx5+cosx94dx(5+4cosx)2nowlooksinx5+4cosx=5I149I24....eqn(2)[5I14(sinx5+cosx)]×19=I2lookifwefindthevalueofI1=dx5+4cosxthenfromeqn(2)wegetvalueofI2finalywegetI=I145I24dx5+4cosx=sec2x25+5tan2x2+44tan2x2dx=sec2x2tan2x2+32=2d(tanx2)32+tan2x2dx=2×13tan1(tanx23)+c1=I1=23tan1(tanx23)I2=19[5I14sinx5+4cosx]Missing \left or extra \rightfinallyI=I145I24=212tan1(tanx23)54×19[103tan1(tanx23)4sinx5+4cosx]I=(21250108)tan1(tanx23)+536(4sinx5+4cosx)+C

Commented by john santu last updated on 04/Apr/20

waw....amazing sir

waw....amazingsir

Commented by TANMAY PANACEA. last updated on 04/Apr/20

thank you sir

thankyousir

Answered by MJS last updated on 04/Apr/20

Weierstrass is the fastest  ∫((cos x)/((5+4cos x)^2 ))dx=       [t=tan (x/2) → dx=(2/(t^2 +1))dt]  =−2∫((t^2 −1)/((t^2 +9)^2 ))dt=  =20∫(dt/((t^2 +9)^2 ))−2∫(dt/(t^2 +9))=  =((10t)/(9(t^2 +9)))−(8/(27))arctan (t/3) =  =((5sin x)/(9(5+4cos x)))−(8/(27))arctan ((tan (x/2))/3) +C

Weierstrassisthefastestcosx(5+4cosx)2dx=[t=tanx2dx=2t2+1dt]=2t21(t2+9)2dt==20dt(t2+9)22dtt2+9==10t9(t2+9)827arctant3==5sinx9(5+4cosx)827arctantanx23+C

Commented by jagoll last updated on 04/Apr/20

great sir. i like this method

greatsir.ilikethismethod

Terms of Service

Privacy Policy

Contact: info@tinkutara.com