Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 87352 by jagoll last updated on 04/Apr/20

f(x)= f(x+1) −x  f(0)= 123  f(29) =?

f(x)=f(x+1)xf(0)=123f(29)=?

Commented by jagoll last updated on 04/Apr/20

x=0 ⇒ 123=f(1)−0  f(1)=123  x=1 ⇒123=f(2)−1 ⇒f(2)=124  x=2⇒124=f(3)−2 ⇒f(3)= 126  x=3 ⇒126=f(4)−3 ⇒f(4)=129  it correct

x=0123=f(1)0f(1)=123x=1123=f(2)1f(2)=124x=2124=f(3)2f(3)=126x=3126=f(4)3f(4)=129itcorrect

Commented by jagoll last updated on 04/Apr/20

f(29)= 123 + ((29×28)/2)  = 123 + 406 = 529

f(29)=123+29×282=123+406=529

Commented by jagoll last updated on 04/Apr/20

mr W, my work it correct?

mrW,myworkitcorrect?

Commented by mr W last updated on 04/Apr/20

yes

yes

Commented by john santu last updated on 04/Apr/20

let f(x) = ax^2 +bx+c  f(x+1)= a(x+1)^2  +b(x+1)+c  f(x+1)−f(x) = x  2ax +a+b = x   2a = 1 ⇒ a =(1/2)  a+b = 0 ⇒ b =−(1/2)  f(x)= (1/2)x^2 −(1/2)x+c  f(0) = c = 123  ∴ f(x)=(1/2)x^2 −(1/2)x+123  then f(29) = (1/2)×29(29−1)+123  ((29×28)/2) + 123

letf(x)=ax2+bx+cf(x+1)=a(x+1)2+b(x+1)+cf(x+1)f(x)=x2ax+a+b=x2a=1a=12a+b=0b=12f(x)=12x212x+cf(0)=c=123f(x)=12x212x+123thenf(29)=12×29(291)+12329×282+123

Commented by jagoll last updated on 04/Apr/20

thank you sir

thankyousir

Answered by mr W last updated on 04/Apr/20

f(k+1)=f(k)+k  Σ_(k=0) ^n f(k+1)=Σ_(k=0) ^n f(k)+Σ_(k=0) ^n k  f(n+1)−f(0)+Σ_(k=0) ^n f(k)=Σ_(k=0) ^n f(k)+Σ_(k=0) ^n k  f(n+1)−f(0)=Σ_(k=0) ^n k=((n(n+1))/2)  f(n+1)=f(0)+((n(n+1))/2)  ⇒f(n)=f(0)+((n(n−1))/2)  ⇒f(29)=123+((29×28)/2)=529

f(k+1)=f(k)+knk=0f(k+1)=nk=0f(k)+nk=0kf(n+1)f(0)+nk=0f(k)=nk=0f(k)+nk=0kf(n+1)f(0)=nk=0k=n(n+1)2f(n+1)=f(0)+n(n+1)2f(n)=f(0)+n(n1)2f(29)=123+29×282=529

Commented by jagoll last updated on 04/Apr/20

thank you sir

thankyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com