Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 87461 by hamdhan last updated on 04/Apr/20

∫_e^(-1)  ^e  ((√(1−(lnx)^2 ))/x) dx

ee11(lnx)2xdx

Commented by ajfour last updated on 04/Apr/20

let  ln x=t    ⇒  (dx)/x=dt  I=2∫_0 ^( 1) (√(1−t^2 )) dt    = [t(√(1−t^2 ))+sin^(−1) t ]_0 ^1     = π/2 .

letlnx=t(dx)/x=dtI=2011t2dt=[t1t2+sin1t]01=π/2.

Answered by Ar Brandon last updated on 04/Apr/20

Let  x=e^y   ⇒dx=e^y dy  I=∫_(−1) ^1 ((√(1−y^2 ))/e^y )∙e^y dy= ∫_(−1) ^1 (√(1−y^2 ))dy  I=(√(1−y^2 ))∫_(−1) ^1 dy−∫_(−1) ^1 [(d/dy)((√(1−y^2 )))∫dy]dy    =[y(√(1−y^2 ))]_(−1) ^1 +∫_(−1) ^1 [(y^2 /(√(1−y^2 )))]dy    let y=sin θ ⇒dy=cos θdθ  I=∫_(−(π/2)) ^(π/2) sin^2 θ dθ=(1/2)∫_(−(π/2)) ^(π/2) (1−cos(2θ))dθ  I=(1/2)[θ−(1/2)sin(2θ)]_(−(π/2)) ^(π/2)   I=(1/2)[(π/2)+(π/2)]=(π/2)

Letx=eydx=eydyI=111y2eyeydy=111y2dyI=1y211dy11[ddy(1y2)dy]dy=[y1y2]11+11[y21y2]dylety=sinθdy=cosθdθI=π2π2sin2θdθ=12π2π2(1cos(2θ))dθI=12[θ12sin(2θ)]π2π2I=12[π2+π2]=π2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com