All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 87461 by hamdhan last updated on 04/Apr/20
∫ee−11−(lnx)2xdx
Commented by ajfour last updated on 04/Apr/20
letlnx=t⇒(dx)/x=dtI=2∫011−t2dt=[t1−t2+sin−1t]01=π/2.
Answered by Ar Brandon last updated on 04/Apr/20
Letx=ey⇒dx=eydyI=∫−111−y2ey⋅eydy=∫−111−y2dyI=1−y2∫−11dy−∫−11[ddy(1−y2)∫dy]dy=[y1−y2]−11+∫−11[y21−y2]dylety=sinθ⇒dy=cosθdθI=∫−π2π2sin2θdθ=12∫−π2π2(1−cos(2θ))dθI=12[θ−12sin(2θ)]−π2π2I=12[π2+π2]=π2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com