Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 87461 by hamdhan last updated on 04/Apr/20

∫_e^(-1)  ^e  ((√(1−(lnx)^2 ))/x) dx

$$\underset{{e}^{-\mathrm{1}} } {\overset{\mathrm{e}} {\int}}\:\frac{\sqrt{\mathrm{1}−\left(\mathrm{ln}{x}\right)^{\mathrm{2}} }}{{x}}\:{dx} \\ $$

Commented by ajfour last updated on 04/Apr/20

let  ln x=t    ⇒  (dx)/x=dt  I=2∫_0 ^( 1) (√(1−t^2 )) dt    = [t(√(1−t^2 ))+sin^(−1) t ]_0 ^1     = π/2 .

$${let}\:\:\mathrm{ln}\:{x}={t}\:\:\:\:\Rightarrow\:\:\left({dx}\right)/{x}={dt} \\ $$$${I}=\mathrm{2}\int_{\mathrm{0}} ^{\:\mathrm{1}} \sqrt{\mathrm{1}−{t}^{\mathrm{2}} }\:{dt} \\ $$$$\:\:=\:\left[{t}\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }+\mathrm{sin}^{−\mathrm{1}} {t}\:\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$\:\:=\:\pi/\mathrm{2}\:. \\ $$

Answered by Ar Brandon last updated on 04/Apr/20

Let  x=e^y   ⇒dx=e^y dy  I=∫_(−1) ^1 ((√(1−y^2 ))/e^y )∙e^y dy= ∫_(−1) ^1 (√(1−y^2 ))dy  I=(√(1−y^2 ))∫_(−1) ^1 dy−∫_(−1) ^1 [(d/dy)((√(1−y^2 )))∫dy]dy    =[y(√(1−y^2 ))]_(−1) ^1 +∫_(−1) ^1 [(y^2 /(√(1−y^2 )))]dy    let y=sin θ ⇒dy=cos θdθ  I=∫_(−(π/2)) ^(π/2) sin^2 θ dθ=(1/2)∫_(−(π/2)) ^(π/2) (1−cos(2θ))dθ  I=(1/2)[θ−(1/2)sin(2θ)]_(−(π/2)) ^(π/2)   I=(1/2)[(π/2)+(π/2)]=(π/2)

$$\boldsymbol{{Let}}\:\:\boldsymbol{{x}}=\boldsymbol{{e}}^{\boldsymbol{{y}}} \:\:\Rightarrow\boldsymbol{{dx}}=\boldsymbol{{e}}^{\boldsymbol{{y}}} \boldsymbol{{dy}} \\ $$$$\boldsymbol{{I}}=\int_{−\mathrm{1}} ^{\mathrm{1}} \frac{\sqrt{\mathrm{1}−\boldsymbol{{y}}^{\mathrm{2}} }}{\boldsymbol{{e}}^{\boldsymbol{{y}}} }\centerdot\boldsymbol{{e}}^{\boldsymbol{{y}}} \boldsymbol{{dy}}=\:\int_{−\mathrm{1}} ^{\mathrm{1}} \sqrt{\mathrm{1}−\boldsymbol{{y}}^{\mathrm{2}} }\boldsymbol{{dy}} \\ $$$${I}=\sqrt{\mathrm{1}−{y}^{\mathrm{2}} }\int_{−\mathrm{1}} ^{\mathrm{1}} {dy}−\int_{−\mathrm{1}} ^{\mathrm{1}} \left[\frac{{d}}{{dy}}\left(\sqrt{\mathrm{1}−{y}^{\mathrm{2}} }\right)\int{dy}\right]{dy} \\ $$$$\:\:=\left[{y}\sqrt{\mathrm{1}−{y}^{\mathrm{2}} }\right]_{−\mathrm{1}} ^{\mathrm{1}} +\int_{−\mathrm{1}} ^{\mathrm{1}} \left[\frac{{y}^{\mathrm{2}} }{\sqrt{\mathrm{1}−{y}^{\mathrm{2}} }}\right]{dy} \\ $$$$\:\:{let}\:{y}={sin}\:\theta\:\Rightarrow{dy}={cos}\:\theta{d}\theta \\ $$$${I}=\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}} \theta\:{d}\theta=\frac{\mathrm{1}}{\mathrm{2}}\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \left(\mathrm{1}−{cos}\left(\mathrm{2}\theta\right)\right){d}\theta \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{2}}\left[\theta−\frac{\mathrm{1}}{\mathrm{2}}{sin}\left(\mathrm{2}\theta\right)\right]_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{\pi}{\mathrm{2}}+\frac{\pi}{\mathrm{2}}\right]=\frac{\pi}{\mathrm{2}} \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com